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Definition of a Random Process

• Random experiment with sample space S.

• To every outcome ζ ∈ S, we assign a function of time

according to some rule:

X(t, ζ) t ∈ I.

• For fixed ζ, the graph of the function X(t, ζ) versus t is

a sample function of the random process.

• For each fixed tk from the index set I, X(tk, ζ) is a

random variable.
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• The indexed family of random variables {X(t, ζ), t ∈ I}

is called a random process or stochastic process.
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• A stochastic process is said to be discrete-time if the

index set I is a countable set.

• A continuous-time stochastic process is one in which

I is continuous.

Example: Let ζ be a number selected at random from the

interval S = [0, 1], and let b1b2 · · · be the binary expansion

of ζ

ζ =
∞
∑

i=1

bi2
−i bi ∈ {0, 1}.

Define the discrete-time random process X(n, ζ) by

X(n, ζ) = bn n = 1, 2, · · · .

A sequence of binary numbers is obtained.
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Example:

1. Let ζ ∈ S = [−1, +1] be selected at random. Define the

continuous-time random process X(t, ζ) by

X(t, ζ) = ζ cos(2πt) −∞ < t < ∞.

2. Let ζ ∈ S = (−π, π) be selected at random, and let

Y (t, ζ) = cos(2πt + ζ)
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6.2 Specifying a Random Process

Joint Distributions of Time Samples

• Let X1, X2, . . . , Xk be the k random variables obtained

by sampling the random process X(t, ζ) at the time

t1, t2, . . . , tk:

X1 = X(t1, ζ), X2 = X(t2, ζ), . . . , Xk = X(tk, ζ).

• The joint behavior of the random process at these k

time instants is specified by the joint cdf of

(X1, X2, . . . , Xk).
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A stochastic process is specified by the collection of

kth-order joint cumulative distribution functions:

FX1,...,Xk
(x1, . . . , xk) = P [X1 ≤ x1, . . . , Xk ≤ xk]

for any k and any choice of sampling instants t1, . . . , tk.
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• If the stochastic process is discrete-valued, then a

collection of probability mass functions can be used to

specify the stochastic process

pX1,...,Xk
(x1, . . . , xk) = P [X1 = x1, . . . , Xk = xk].

• If the stochastic process is continuous-valued, then a

collection of probability density functions can be used

instead:

fX1,...,Xk
(x1, . . . , xk).
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Example: Let Xn be a sequence of independent,

identically distributed Bernoulli random variables with

p = 1/2. The joint pmf for any k time samples is then

P [X1 = x1, X2 = x2, . . . , Xk = xk] = 2−k xi ∈ {0, 1} ∀ i.
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• A random process X(t) is said to have independent

increments if for any k and any choice of sampling

instants t1 < t2 · · · < tk, the random variables

X(t2) − X(t1), X(t3) − X(t2), . . . , X(tk) − X(tk−1)

are independent random variables.

• A random process X(t) is said to be Markov if the

future of the process given the present is independent of

the past; that is, for any k and any choice of sampling

instants t1 < t2 < · · · < tk and for any x1, x2, . . . , xk,

fX(tk)(xk|X(tk−1) = xk−1, . . . , X(t1) = x1)

= fX(tk)(xk|X(tk−1) = xk−1)
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if X(t) is continuous-valued, and

P [X(tk) = xk|X(tk−1) = xk−1, . . . , X(t1) = x1)

= P [X(tk) = xk|X(tk−1) = xk−1)

if X(t) is discrete-valued.
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Independent increments → Markov;

Markov →

NOT independent increments

The Mean, Autocorrelation, and Autocovariance

Functions

• The mean mX(t) of a random process X(t) is defined

by

mX(t) = E[X(t)] =

∫ +∞

−∞

xfX(t)(x)dx,

where fX(t)(x) is the pdf of X(t).

• mX(t) is a function of time.

• The autocorrelation RX(t1, t2) of a random process
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X(t) is defined as

RX(t1, t2) = E[X(t1)X(t2)]

=

∫ +∞

−∞

∫ +∞

−∞

xyfX(t1),X(t2)(x, y)dxdy.

• In general, the autocorrelation is a function of t1 and t2.
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• The autocovariance CX(t1, t2) of a random process X(t) is

defined as the covariance of X(t1) and X(t2)

CX(t1, t2) = E [{X(t1) − mX(t1)}{X(t2) − mX(t2)}] .

•

CX(t1, t2) = RX(t1, t2) − mX(t1)mX(t2).

• The variance of X(t) can be obtained from CX(t1, t2):

VAR[X(t)] = E[(X(t) − mX(t))2] = CX(t, t).

• The correlation coefficient of X(t) is given by

ρX(t1, t2) =
CX(t1, t2)

√

CX(t1, t1)
√

CX(t2, t2)
.

• |ρX(t1, t2)| ≤ 1.
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Example: Let X(t) = A cos 2πt, where A is some random variable.

The mean of X(t) is given by

mX(t) = E[A cos 2πt] = E[A] cos 2πt.

The autocorrelation is

RX(t1, t2) = E[A cos(2πt1)A cos(2πt2)]

= E[A2] cos(2πt1) cos(2πt2),

and the autocovariance

CX(t1, t2) = RX(t1, t2) − mX(t1)mX(t2)

= {E[A2] − E[A]2} cos(2πt1) cos(2πt2)

= VAR[A] cos(2πt1) cos(2πt2).
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Example: Let X(t) = cos(ωt + Θ), where Θ is uniformly distributed

in the interval (−π, π). The mean of X(t) is given by

mX(t) = E[cos(ωt + Θ)] =
1

2π

∫ π

−π

cos(ωt + θ)dθ = 0.

The autocorrelation and autocovariance are then

CX(t1, t2) = RX(t1, t2) = E[cos(ωt1 + Θ) cos(ωt2 + Θ)]

=
1

2π

∫ π

−π

1

2
{cos(ω(t1 − t2)) + cos(ω(t1 + t2) + 2θ)}dθ

=
1

2
cos(ω(t1 − t2)).
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Gaussian Random Process A random process X(t) is a

Gaussian random process if the samples

X1 = X(t1), X2 = X(t2), . . . , Xk = X(tk) are joint Gaussian random

variables for all k, and all choices of t1, . . . , tk:

fX1,X2,...,Xk
(x1, . . . , xk) =

e−1/2(x−m)K−1(x−m)

(2π)k/2|K|1/2
,

where

m =











mX(t1)
...

mX(tk)











K =

















CX(t1, t1) CX(t1, t2) · · · CX(t1, tk)

CX(t2, t1) CX(t2, t2) · · · CX(t2, tk)
...

...
...

CX(tk, t1) · · · CX(tk, tk)

















.

The joint pdf’s of Gaussian random process are completely specified

by the mean and by covariance function.
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Linear operation on a Gaussian random process results in another

Gaussian random process.
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Example: Let the discrete-time random process Xn be a sequence of

independent Gaussian random variables with mean m and variance

σ2. The covariance matrix for the time t1, . . . , tk is

{CX(ti, tj)} = {σ2δij} = σ2I,

where δij = 1 when i = j and 0 otherwise, and I is the identity

matrix.

The corresponding joint pdf

fX1,...,Xk
(x1, . . . , xk) =

1

(2πσ2)k/2
exp

{

−

k
∑

i=1

(xi − m)2/2σ2

}

= fX(x1)fX(x2) · · · fX(xk).
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Multiple Random Processes

• The joint behavior of X(t) and Y (t) must specify all possible

joint density functions of X(t1), . . . , X(tk) and Y (t′1), . . . , Y (t′j)

for all k, j and all choices of t1, . . . , tk and t′1, . . . , t
′

j .

• X(t) and Y (t) are said to be independent if the vector random

variables (X(t1), . . . , X(tk)) and (Y (t′1), . . . , Y (t′j)) are

independent for all k, j and all choices of t1, . . . , tk and t′1, . . . , t
′

j .

• The cross-correlation RX,Y (t1, t2) of X(t) and Y (t) is defined

by

RX,Y (t1, t2) = E[X(t1)Y (t2)].

• The process X(t) and Y (t) are said to be orthogonal if

RX,Y (t1, t2) = 0 for all t1 and t2.
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• The cross-covariance CX,Y (t1, t2) of X(t) and Y (t) is defined

by

CX,Y (t1, t2) = E[{X(t1) − mX(t1)}{Y (t2) − mY (t2)}]

= RX,Y (t1, t2) − mX(t1)mY (t2).

• The process X(t) and Y (t) are said to be uncorrelated if

CX,Y (t1, t2) = 0 for all t1 and t2.

• Note that

CX,Y (t1, t2) = 0

↔ RX,Y (t1, t2) = E[X(t1)Y (t2)] = mX(t1)mY (t2) = E[X(t1)]E[Y (t2)].
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Example: Let X(t) = cos(ωt + Θ) and Y (t) = sin(ωt + Θ), where Θ

is a random variable uniformly distributed in [−π, π]. Find the

cross-covariance of X(t) and Y (t).

Sol: Since X(t) and Y (t) are zero-mean, the cross-covariance is equal

to the cross-correlation.

RX,Y (t1, t2) = E[cos(ωt1 + Θ) sin(ωt2 + Θ)]

= E

[

−
1

2
sin(ω(t1 − t2)) +

1

2
sin(ω(t1 + t2) + 2Θ)

]

= −
1

2
sin(ω(t1 − t2)),

since E[sin(ω(t1 + t2) + 2Θ)] = 0.
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Example: Suppose we observe a process Y (t):

Y (t) = X(t) + N(t).

Find the cross-correlation between the observed signal and

the desired signal assuming that X(t) and N(t) are

independent random processes.

RX,Y (t1, t2) = E[X(t1)Y (t2)]

= E[X(t1) {X(t2) + N(t2)}]

= E[X(t1)X(t2)] + E[X(t1)N(t2)]

= RX(t1, t2) + E[X(t1)]E[N(t2)]

= RX(t1, t2) + mX(t1)mN(t2).
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6.3 Examples of Discrete-Time Random Processes

iid Random Processes

• The sequence Xn is called independent, identically

distributed (iid) random process, if the joint cdf for

any time instants n1, . . . , nk can be expressed as

FXn1 ,...,Xnk
(xn1 , . . . , xnk

) = P [Xn1 ≤ xn1 , . . . , Xnk
≤ xnk

]

= FXn1
(xn1) · · ·FXnk

(xnk
).

• The mean of an iid process is

mX(n) = E[Xn] = m for all n.
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• Autocovariance function:

– If n1 6= n2

CX(n1, n2) = E[(Xn1 − m)(Xn2 − m)]

= E[(Xn1 − m)]E[(Xn2 − m)] = 0

since Xn2 and Xn2 are independent.

– If n1 = n2 = n

CX(n1, n2) = E[(Xn − m)2] = σ2.

– Therefore

CX(n1, n2) = σ2δn1,n2 .
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• The autocorrelation function of an iid process

RX(n1, n2) = CX(n1, n2) + m2.
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Sum Processes: The Binomial Counting and Random Walk

Process

• Consider a random process Sn which is the sum of a sequence of

iid random variables, X1, X2, . . .:

Sn = X1 + X2 + . . . + Xn n = 1, 2, . . .

= Sn−1 + Xn,

where S0 = 0.
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• We call Sn the sum process. Sn is independent of the past when

Sn−1 is known.
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Example: Let Ii be the sequence of independent Bernoulli

random variable, and let Sn be the corresponding sum

process. Sn is a binomial random variable with parameter

n and p = P [I = 1]:

P [Sn = j] =

(

n

j

)

pj(1 − p)n−j for 0 ≤ j ≤ n,

and zero otherwise. Thus Sn has mean np and variance

np(1 − p).
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• The sum process Sn has independent increments in

nonoverlapping time intervals.

• For example: n0 < n ≤ n1 and n2 < n ≤ n3, where

n1 ≤ n2. We have

Sn1 − Sn0 = Xn0+1 + · · · + Xn1

Sn3 − Sn2 = Xn2+1 + · · · + Xn3 .

The independence of the Xn’s implies (Sn1 − Sn0) and

(Sn3 − Sn2) are independent random variables.

• For n′ > n, (Sn′ − Sn) is the sum of n′ − n iid random

variables, so it has the same distribution as Sn′−n

P [Sn′ − Sn = y] = P [Sn′
−n = y].
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• Thus, increments in intervals of the same length have

the same distribution regardless of when the interval

begins. We say that Sn has stationary increments.
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• Compute the joint pmf of Sn at time n1, n2, and n3

P [Sn1 = y1, Sn2 = y2, Sn3 = y3]

= P [Sn1 = y1, Sn2 − Sn1 = y2 − y1, Sn3 − Sn2 = y3 − y2]

= P [Sn1 = y1]P [Sn2 − Sn1 = y2 − y1]

×P [Sn3 − Sn2 = y3 − y2].

• The stationary increments property implies that

P [Sn1 = y1, Sn2 = y2, Sn3 = y3]

= P [Sn1 = y1]P [Sn2−n1 = y2 − y1]P [Sn3−n2 = y3 − y2].

• In general, we have

P [Sn1 = y1, Sn2 = y2, . . . , Snk
= yk]

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Random Processes 34

= P [Sn1 = y1]P [Sn2−n1 = y2 − y1]

· · ·P [Snk−nk−1
= yk − yk−1].

• If Xn are continuous-valued random variables, then

fSn1 ,...,Snk
(y1, . . . , yk)

= fSn1
(y1)fSn2−n1

(y2 − y1) · · · fSnk
−Snk−1

(yk − yk−1).

Example: Find the joint pmf for the binomial counting

process at times n1 and n2.

P [Sn1 = y1, Sn2 = y2] = P [Sn1 = y1]P [Sn2−n1 = y2 − y1]

=

(

n2 − n1

y2 − y1

)

py2−y1(1 − p)n2−n1−y2+y1
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×

(

n1

y1

)

py1(1 − p)n1−y1

=

(

n2 − n1

y2 − y1

)(

n1

y1

)

py2(1 − p)n2−y2 .
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• The mean and variance of a sum process

mS(n) = E[Sn] = nE[X] = nm

VAR[Sn] = nVAR[X] = nσ2.

• The autocovariance of Sn

CS(n, k) = E[(Sn − E[Sn])(Sk − E[Sk])]

= E[(Sn − nm)(Sk − km)]

= E

[{

n
∑

i=1

(Xi − m)

}{

k
∑

j=1

(Xj − m)

}]

=
n
∑

i=1

k
∑

j=1

E[(Xi − m)(Xj − m)]
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=
n
∑

i=1

k
∑

j=1

CX(i, j)

=
n
∑

i=1

k
∑

j=1

σ2δi,j

=

min(n,k)
∑

i=1

CX(i, i) = min(n, k)σ2.

• The property of independent increments allows us to

compute the autocovariance in another way.

• Suppose n ≤ k so n = min(n, k)

CS(n, k) = E[(Sn − nm)(Sk − km)]
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= E[(Sn − nm){(Sn − nm) + (Sk − km) − (Sn − nm)}]

= E[(Sn − nm)2] + E[(Sn − nm)(Sk − Sn − (k − n)m)]

= E[(Sn − nm)2] + E[Sn − nm]E[Sk − Sn − (k − n)m]

= E[(Sn − nm)2]

= VAR[Sn] = nσ2.
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first-Order Autoregressive Random Process
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Moving Average Process
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6.4 Examples of Continuous-Time Random Processes

Poisson Process

• Events occur at random instants of time at an average

rate of λ events per second.

• Let N(t) be the number of event occurrences in the

time interval [0, t].
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• Divide [0, t] into n subintervals of duration δ = t/n.

• Assume that the following two conditions hold:
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1. The probability of more than one event occurrence

in a subinterval is negligible compared to the

probability of observing one or zero events. –

Bernoulli trial

2. Whether or not an event occurs in a subinterval is

independent of the outcomes in other subintervals. –

Bernoulli trials are independent.

• N(t) can be approximated by the binomial counting

process.

• Let p be the prob. of event occurrence in each

subinterval. Then the expected number of event

occurrence in the interval [0, t] is np.
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• The average number of events in the interval [0, t] is

also λt. Thus

λt = np.

• Let n → ∞ and then p → 0 while np = λt remains

fixed.

• Binomial distribution approaches Poisson distribution

with parameter λt.

P [N(t) = k] =
(λt)k

k!
e−λt for k = 0, 1, . . .

• N(t) is called Poisson process.
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• We will show that if n is large and p is small, then for

α = np,

pk =

(

n

k

)

pk(1 − p)n−k ≃
αk

k!
e−α k = 0, 1, . . . .

• Consider the probability that no events occur in n

trials:

p0 = (1 − p)n =
(

1 −
α

n

)n

→ e−α as n → ∞.

• Let q = 1 − p. Noting that

pk+1

pk

=

(

n

k+1

)

pk+1qn−k−1

(

n

k

)

pkqn−k

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Random Processes 46

=
(n − k)p

(k + 1)q
=

(1 − k/n)α

(k + 1)(1 − α/n)

→
α

k + 1
as n → ∞.

Thus

pk+1 =
α

k + 1
pk for k = 0, 1, 2, . . .

and

p0 = e−α.

• A simple induction argument then shows that

pk =
αk

k!
e−α for k = 0, 1, 2, . . . .

• The mean (the variance) of N(t) is λt.
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• Independent and stationary increments →

P [N(t1) = i, N(t2) = j] = P [N(t1) = i]P [N(t2) − N(t1) = j − i]

= P [N(t1) = i]P [N(t2 − t1) = j − i]

=
(λt1)

ie−λt1

i!

(λ(t2 − t1))
j−ie−λ(t2−t1)

(j − i)!
.

• Covariance of N(t). Suppose t1 ≤ t2, then

CN(t1, t2) = E[(N(t1) − λt1)(N(t2) − λt2)]

= E[(N(t1) − λt1){N(t2) − N(t1) − λt2 + λt1

+(N(t1) − λt1)}]

= E[N(t1) − λt1]E[N(t2) − N(t1) − λ(t2 − t1)]

+VAR[N(t1)]

= VAR[N(t1)] = λt1 = λ min(t1, t2).
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Interevent Times

• Consider the time T between event occurrences in a

Poisson process.

• [0, t] is divided into n subintervals of length δ = t/n.

• The probability that T > t is

P [T > t] = P [no events in t seconds]

= (1 − p)n

=

(

1 −
λt

n

)n

→ e−λt as n → ∞.
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• The cdf of T is then

1 − e−λt.

• T is an exponential random variable with parameter λ.

• Since the times between event occurrences in the

underlying binomial process are independent geometric

random variable, it follows that the interevent times in

a Poisson Process form an iid sequence of exponential

random variables with mean 1/λ.
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Individual Arrival Times

• In applications where the Poisson process models

customer interarrival times, it is customary to say that

arrivals occur “at random.”

• Suppose that we are given that only one arrival

occurred in an interval [0, t], and let X be the arrival

time of the single customer.

• For 0 < x < t, let N(x) be the number of events up to

time x, and let N(t) − N(x) be the increment in the

interval (x, t], then

P [X ≤ x] = P [N(x) = 1 | N(t) = 1]

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Random Processes 51

=
P [N(x) = 1 and N(t) = 1]

P [N(t) = 1]

=
P [N(x) = 1 and N(t) − N(x) = 0]

P [N(t) = 1]

=
P [N(x) = 1]P [N(t) − N(x) = 0]

P [N(t) = 1]

=
λxe−λxe−λ(t−x)

λte−λt

=
x

t
.

• It can be shown that if the number of arrivals in the

interval [0, t] is k, then the individual arrival times are

distributed independently and uniformly in the interval.
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6.5 Stationary Random Processes

• We now consider those random processes that

Randomness in the processes does not change with

time, that is, they have the same behaviors between an

observation in (t0, t1) and (t0 + τ, t1 + τ).

• A discrete-time or continuous-time random process

X(t) is stationary if the joint distribution of any set

of samples does not depend on the placement of the

time origin. That is,

FX(t1),...,X(tk)(x1, . . . , xk) = FX(t1+τ),...,X(tk+τ)(x1, . . . , xk)

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Random Processes 53

for all time shift τ , all k, and all choices of sample

times t1, . . . , tk.
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• Two processes X(t) and Y (t) are said to be jointly

stationary if the joint cdf’s of X(t1), . . . , X(tk) and

Y (t′1), . . . , Y (t′j) do not depend on the placement of the

time origin for all k and j and all choices of sampling

times t1, . . . , tk and t′1, . . . , t
′

j.

• The first-order cdf of a stationary random process must

be independent of time, i.e.,

FX(t)(x) = FX(t+τ)(x) = FX(x) for all t and τ ;

mX(t) = E[X(t)] = m for all t;

VAR[X(t)] = E[(X(t) − m)2] = σ2 for all t.

• The second-order cdf of a stationary random process is
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with

FX(t1),X(t2)(x1, x2) = FX(0),X(t2−t1)(x1, x2) for all t1, t2.
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• The autocorrelation and autocovariance of stationary

random process X(t) depend only on t2 − t1:

RX(t1, t2) = RX(t2 − t1) for all t1, t2;

CX(t1, t2) = CX(t2 − t1) for all t1, t2.

Example: Is the sum process Sn a discrete-time

stationary process? We have

Sn = X1 + X2 + · · · + Xn,

where Xi is an iid sequence.

Since

mS(n) = nm and VAR[Sn] = nσ2,
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mean and variance of Sn are not constant. Thus, Sn

cannot be a stationary process.
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Wide-Sense Stationary Random Processes

• A discrete-time or continuous-time random process

X(t) is wide-sense stationary (WSS) if it satisfies

mX(t) = m for all t and

CX(t1, t2) = CX(t1 − t2) for all t1 and t2.

• Two processes X(t) and Y (t) are said to be jointly

wide-sense stationary if they are both wide-sense

stationary and if their cross-covariance depends only on

t1 − t2.

• When X(t) is wide-sense stationary, we have

CX(t1, t2) = CX(τ) and RX(t1, t2) = RX(τ),
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where τ = t1 − t2.

• Stationary random process → wide-sense stationary

process
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• Assume that X(t) is a wide-sense stationary process.

• The average power of X(t) is given by

E[X(t)2] = RX(0) for all t.

• The autocorrelation function of X(t) is an even

function since

RX(τ) = E[X(t+τ)X(t)] = E[X(t)X(t+τ)] = RX(−τ).

• The autocorrelation function is a measure of the rate of

change of a random process.

• Consider the change in the process from time t to t + τ :

P [| X(t + τ) − X(t) |> ǫ] = P [(X(t + τ) − X(t))2 > ǫ2]
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≤
E[(X(t + τ) − X(t))2]

ǫ2

=
2(RX(0) − RX(τ))

ǫ2
,

where we apply the Markov inequality to obtain the

upper bound. If RX(0) − RX(τ) is small, then the

probability of a large change in X(t) in τ seconds is

small.

• The autocorrelation function is maximum at τ = 0

since

RX(τ)2 = E[X(t+τ)X(t)]2 ≤ E[X2(t+τ)]E[X2(t)] = RX(0)2,
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where we use the fact that

E[XY ]2 ≤ E[X2]E[Y 2].

• If RX(0) = RX(d), then RX(τ) is periodic with period

d and X(t) is mean square periodic, i.e.,

E[(X(t + d) − X(t))2] = 0.

•

E[(X(t + τ + d) − X(t + τ))X(t)]2

≤ E[(X(t + τ + d) − X(t + τ))2]E[X2(t)],

which implies that

{RX(τ + d) − RX(τ)}2 ≤ 2 {RX(0) − RX(d)}RX(0).
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Therefore,

RX(τ + d) = RX(τ).

The fact that X(t) is mean square periodic is from

E[(X(t + d) − X(t))2] = 2{RX(0) − RX(d)} = 0.

• Let X(t) = m + N(t), where N(t) is a zero-mean

process for which RN(τ) → 0 as τ → ∞. Then

RX(τ) = E[(m + N(t + τ))(m + N(t))]

= m2 + 2mE[N(t)] + RN(τ)

= m2 + RN(τ) → m2 as τ → ∞.

• In summary, the autocorrelation function can have

three types of components: (1) a component that
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approaches zero as τ → ∞; (2) a periodic component;

and (3) a component due to a non zero mean.
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Wide-Sense Stationary Gaussian Random

Processes

• If a Gaussian random process is wide-sense stationary,

then it is also stationary.

• This is due to the fact that the joint pdf of a Gaussian

random process is completely determined by the mean

mX(t) and the autocovariance CX(t1, t2).

Example: Let Xn be an iid sequence of Gaussian random

variables with zero mean and variance σ2, and let Yn be

Yn =
Xn + Xn−1

2
.
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The mean of Yn is zero since E[Xi] = 0 for all i. The

covariance of Yn is

CY (i, j)

= E[YiYj] =
1

4
E[(Xi + Xi−1)(Xj + Xj−1)]

=
1

4
{E[XiXj] + E[XiXj−1] + E[Xi−1Xj] + E[Xi−1Xj−1]}

=















1
2
σ2, if i = j

1
4
σ2, if |i − j| = 1

0, otherwise

.

Yn is a wide sense stationary process since it has a

constant mean and a covariance function that depends
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only on |i − j|.

Yn is a Gaussian random variable since it is defined by a

linear function of Gaussian random variables.
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Cyclostationary Random Processes

• A random process X(t) is said to be cyclostationary

with period T if the joint cdf’s of

X(t1), X(t2), . . . , X(tk) and

X(t1 + mT ), X(t2 + mT ), . . . , X(tk + mT ) are the same

for all k,m and all choices of t1, . . . , tk:

FX(t1),X(t2),...,X(tk)(x1, x2, . . . , xk)

= FX(t1+mT ),X(t2+mT ),...,X(tk+mT )(x1, x2, . . . , xk).

• X(t) is said to be wide-sense cyclostationary if

mX(t + mT ) = mX(t) and

CX(t1 + mT, t2 + mT ) = CX(t1, t2).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Random Processes 71

Example: Consider a random amplitude sinusoid with

period T :

X(t) = A cos(2πt/T ).

Is X(t) cyclostationary? wide-sense cyclostationary?

We have

P [X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tk) ≤ xk]

= P [A cos(2πt1/T ) ≤ x1, . . . , A cos(2πtk/T ) ≤ xk]

= P [A cos(2π(t1 + mT )/T ) ≤ x1, . . . , A cos(2π(tk + mT )/T ) ≤ xk]

= P [X(t1 + mT ) ≤ x1, X(t2 + mT ) ≤ x2, . . . , X(tk + mT ) ≤ xk].

Thus, X(t) is a cyclostationary random process.
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6.7 Time Averages of Random Processes

and Ergodic Theorems

• We consider the measurement of repeated random

experiments.

• We want to take arithmetic average of the quantities of

interest.

• To estimate the mean mX(t) of a random process

X(t, ζ) we have

m̂X(t) =
1

N

N
∑

i=1

X(t, ζi),
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where N is the number of repetitions of the experiment.

• Time average of a single realization is given by

〈X(t)〉T =
1

2T

∫ T

−T

X(t, ζ)dt.

• Ergodic theorem states conditions under which a

time average converges as the observation interval

becomes large.

• We are interested in ergodic theorems that state when

time average converge to the ensemble average.
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• The strong law of large numbers given as

P

[

lim
n→∞

1

n

n
∑

i=1

Xi = m

]

= 1

is one of the most important ergodic theorems, where

Xn is an iid discrete-time random process with finite

mean E[Xi] = m.
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Example: Let X(t) = A for all t, where A is a zero mean,

unit-variance random variable. Find the limit value of the time

average.

The mean of the process mX(t) = E[X(t)] = E[A] = 0. The time

average gives

〈X(t)〉T =
1

2T

∫ T

−T

Adt = A.

The time average does not converge to mX(t) = 0. → Stationary

processes need not be ergodic.
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• Let X(t) be a WSS process. Then

E[〈X(t)〉T ] = E

[

1

2T

∫ T

−T

X(t)dt

]

=
1

2T

∫ T

−T

E[X(t)]dt = m.

Hence, 〈X(t)〉T is an unbiased estimator for m.

• Variance of 〈X(t)〉T is given by

VAR[〈X(t)〉T ] = E[(〈X(t)〉T − m)2]

= E

��
1

2T

Z T

−T

(X(t) − m)dt
��

1

2T

Z T

−T

(X(t′) − m)dt′

��
=

1

4T 2

Z T

−T

Z T

−T

E[(X(t) − m)(X(t′) − m)]dtdt′
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=
1

4T 2

Z T

−T

Z T

−T

CX(t, t′)dtdt′.

• Since the process X(t) is WSS, we have

VAR[〈X(t)〉T ] =
1

4T 2

∫ T

−T

∫ T

−T

CX(t − t′)dtdt′

=
1

4T 2

∫ 2T

−2T

(2T − |u|)CX(u)du

=
1

2T

∫ 2T

−2T

(

1 −
|u|

2T

)

CX(u)du.
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• 〈X(t)〉T will approach m in the mean square sense, that

is, E[(〈X(t)〉T − m)2] → 0, if VAR[〈X(t)〉T ] approaches

zero.

Theorem: Let X(t) be a WSS process with mX(t) = m,

then

lim
T→∞

〈X(t)〉T = m

in the mean square sense, if and only if

lim
T→∞

1

2T

∫ 2T

−2T

(

1 −
|u|

2T

)

CX(u)du = 0.
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• Time-average estimate for the autocorrelation function

is given by

〈X(t + τ)X(t)〉T =
1

2T

∫ T

−T

X(t + τ)X(t)dt.

• E[〈X(t + τ)X(t)〉T ] = RX(τ) if X(t) is WSS random

process.

• Time average autocorrelation converges to RX(τ) in

the mean square sense if VAR[〈X(t + τ)X(t)〉T ]

converges to zero.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Random Processes 81

• If the random process is discrete time, then

〈Xn〉T =
1

2T + 1

T
∑

n=−T

Xn;

〈Xn+kXn〉T =
1

2T + 1

T
∑

n=−T

Xn+kXn.

• If Xn is a WSS random process, then E[〈Xn〉T ] = m.

• Variance of 〈Xn〉T is given by

VAR[〈Xn〉T ] =
1

2T + 1

2T
∑

k=−2T

(

1 −
|k|

2T + 1

)

CX(k).
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• 〈Xn〉T approaches m in the mean square sense and is

mean ergodic if

1

2T + 1

2T
∑

k=−2T

(

1 −
|k|

2T + 1

)

CX(k) → 0.
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