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7.1 Power Spectral Density

• Fourier series and Fourier transform – Analysis of

nonrandom time function in the frequency domain.

• For WSS processes X(t), the autocorrelation function

RX(τ) is an measure for the average rate of change of

X(t).

• Einstein-Wiener-Khinchin Theorem: Power

spectral density of a WSS random process is given by

the Fourier transform of the autocorrelation function.
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Continuous-Time Random Process

• X(t) is a continuous-time WSS random process with

mean mX and autocorrelation function RX(τ).

• The power-spectral density of X(t) is given by the

Fourier transform of the autocorrelation function.

SX(f) = F{RX(τ)}

=

∫ +∞

−∞

RX(τ)e−j2πfτdτ.

• If X(t) is real value, then

RX(τ) = RX(−τ).
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We have

SX(f) =

∫ +∞

−∞

RX(τ)[cos(2πfτ) + j sin(2πfτ)]dτ

=

∫ +∞

−∞

RX(τ) cos(2πfτ)dτ.

• Inverse Fourier transform is given by

RX(τ) = F−1{SX(f)}

=

∫ +∞

−∞

SX(f)ej2πfτdf.

• Average power of X(t) is

E[X2(t)] = RX(0) =

∫ +∞

−∞

SX(f)df.
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• SX(f) is the density of power of X(t) at the frequency

f .

• Since RX(τ) = CX(τ) + m2
X , the power spectral density

is also given by

SX(f) = F{CX(τ) + m2
X}

= F{CX(τ)} + m2
Xδ(f).

Note that m2
X is the “dc” component of X(t).

• Cross-power spectral density SX,Y (f) is defined by

SX,Y (f) = F{RX,Y (τ)},

where

RX,Y (τ) = E[X(t + τ)Y (t)].
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• In general, SX,Y (f) is a complex function of f .
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Example: The autocorrelation function of the random

telegraph process is given by

RX(τ) = e−2α|τ |.

The power spectral density is

SX(f) =

∫ 0

−∞

e2ατe−j2πfτdτ +

∫ ∞

0

e−2ατe−j2πfτ

=
1

2α − j2πf
+

1

2α + j2πf

=
4α

4α2 + 4π2f 2
.
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Example: The power spectral density of a WSS white

noise whose frequency components are limited to

−W ≤ f ≤ W is shown in the following figure:
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The average power is

E[X2(t)] =

∫ W

−W

N0

2
df = N0W.

The autocorrelation function for this process is

RX(τ) =
1

2
N0

∫ W

−W

ej2πfτdf

=
1

2
N0

e−j2πWτ − ej2πWτ

−j2πτ

=
N0 sin(2πWτ)

2πτ
.
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• White noise usually refers to a random process W (t)
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whose power spectral density is N0/2 for all frequencies:

SW (f) =
N0

2
for all f.

• White noise has infinity average power.

• Autocorrelation function of W (t) is

RW (τ) =
N0

2
δ(τ).

• If W (t) is a Gaussian random process, then W (t) is the

white Gaussian noise process.
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Example: Find the power spectral density of

Z(t) = X(t) + Y (t), where X(t) and Y (t) are jointly WSS

process. The autocorrelation function of Z(t) is

RZ(τ) = E[Z(t + τ)Z(t)]

= E[(X(t + τ) + Y (t + τ))(X(t) + Y (t))]

= RX(τ) + RY X(τ) + RXY (τ) + RY (τ).

The power spectral density is

SZ(f) = F{RX(τ) + RY X(τ) + RXY (τ) + RY (τ)}

= SX(f) + SY X(f) + SXY (f) + SY (f).
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Discrete-Time Random Process

• Let Xn be a discrete-time WSS random process with

mean mX and autocorrelation function RX(k).

• The power spectral density of Xn is defined as the

Fourier transform

SX(f) = F{RX(k)}

=
∞

∑

k=−∞

RX(k)e−j2πfk.

• We only need to consider frequencies in the range

−1/2 < f ≤ 1/2, since SX(f) is periodic in f with

period 1.
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• Inverse Fourier transform is given by

RX(k) =

∫ 1/2

−1/2

SX(f)ej2πfkdf.

• The cross-power spectral density SXY (f) of two

joint WSS discrete-time processes Xn and Yn is defined

by

SX,Y (f) = F{RX,Y (k)}

and

RX,Y (k) = E[Xn+kYn].
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Example: Let the process Xn be a sequence of

uncorrelated random variables with zero mean and

variance σ2
X . Find SX(f).

RX(k) =

{

σ2
X k = 0

0 k 6= 0
.

The power spectral density of the process can be found to

be

SX(f) = σ2
X −

1

2
< f <

1

2
.
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Example: Let Yn = Xn + αXn−1, where Xn is the white

noise process given in the previous example. Find SY (f).

Sol: The mean and autocorrelation function of Yn are

given by

E[Yn] = 0

and

E[YnYn+k] =















(1 + α2)σ2
X k = 0

ασ2
X k = ±1

0 otherwise

.

The power spectral density is then

SY (f) = (1 + α2)σ2
X + ασ2

X(ej2πf + e−j2πf )

= σ2
X{(1 + α2) + 2α cos(2πf)}.
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α = 1
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Example: Let the observation Zn is given by

Zn = Xn + Yn, where Xn is the signal we wish to observe,

Yn is a white noise process with power σ2
Y , and Xn and Yn

are independent. Suppose that Xn = A for all n, where A

is a random variable with zero mean and variance σ2
A. Find

the power spectral density of Zn.

Sol: The mean and autocorrelation of Zn are

E[Zn] = E[A] + E[Yn] = 0

and

E[ZnZn+k] = E[(Xn + Yn)(Xn+k + Yn+k)]

= E[XnXn+k] + E[Xn]E[Yn+k]
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+E[Xn+k]E[Yn] + E[YnYn+k]

= E[A2] + RY (k).

Thus Zn is also a WSS process. The power spectral density

of Zn is then

SZ(f) = E[A2]δ(f) + SY (f).
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Power Spectral Density as a Time Average

• Let X0, . . . , Xk−1 be k observations from the

discrete-time, WSS process Xn. The Fourier transform

of this sequence is

x̃k(f) =
k−1
∑

m=0

Xme−j2πfm

• |x̃k(f)|2 is a measure of the “energy” at frequency f .

• Divide this energy by total “time” k, we obtain an

estimate for the power at frequency f :

p̃k(f) =
1

k
|x̃k(f)|2.
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• p̃k(f) is called the periodogram estimate.

• Consider the expected value of the periodogram

estimate:

E[p̃k(f)] =
1

k
E[x̃k(f)x̃∗

k(f)]

=
1

k
E

[

k−1
∑

m=0

Xme−j2πfm

k−1
∑

i=0

Xie
j2πfi

]

=
1

k

k−1
∑

m=0

k−1
∑

i=0

E[XmXi]e
−j2πf(m−i)

=
1

k

k−1
∑

m=0

k−1
∑

i=0

RX(m − i)e−j2πf(m−i).
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By the above figure, we have

E[p̃k(f)] =
1

k

k−1
∑

m′=−(k−1)

{k − |m′|}RX(m′)e−j2πfm′

=
k−1
∑

m′=−(k−1)

{

1 −
|m′|

k

}

RX(m′)e−j2πfm′

.

As k → ∞, we have

E[p̃k(f)] → SX(f).

The above result shows that SX(f) is nonnegative for all f

since p̃k(f) is nonnegative for all f .
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For continuous-time WSS random process X(t), based on

the observation in the interval (0, T ), we have

p̃T (f) =
1

T
|x̃T (f)|2.

The result shows

lim
T→∞

E[p̃T (f)] = SX(f).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Analysis and Processing of Random Signals 25

7.2 Response of Linear Systems to Random Signals

• Prediction based on previous data

• Filtering and Smoothing

• Modulation
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Continuous-Time Systems

• Consider a system in which an input signal x(t) is

mapped into the output signal y(t) by the

transformation:

y(t) = T [x(t)].

• The system is linear if

T [αx1(t) + βx2(t)] = αT [x1(t)] + βT [x2(t)].

• Time-invariant system is given by

Input x(t) → Output y(t);

Input x(t − τ) → Output y(t − τ).
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• Impulse response of an LTI system is given by

h(t) = T [δ(t)].

• The response of an LTI system to an input x(t) is

y(t) = h(t) ∗ x(t) =

Z +∞

−∞

h(s)x(t − s)ds =

Z +∞

−∞

h(t − s)x(s)ds.

• The transfer function of the system is given by

H(f) = F{h(t)} =

∫ +∞

−∞

h(t)e−j2πftdt.

• A system is Causal if the response at time t depends

only on past values of the input, that is, if h(t) = 0 for

t < 0.
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• If a random process X(t) is the input of an LTI system,

then

Y (t) =

∫ +∞

−∞

h(s)X(t − s)ds =

∫ +∞

−∞

h(t − s)X(s)ds.

• If X(t) is WSS, then Y (t) is also WSS.
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Proof: The mean of Y (t) is given by

E[Y (t)] = E

�Z +∞

−∞

h(s)X(t − s)ds

�

=

Z +∞

−∞

h(s)E[X(t − s)]ds

= mX

Z +∞

−∞

h(τ)dτ = mXH(0).

The auto correlation function is given by

E[Y (t)Y (t + τ)] = E
�Z +∞

−∞

h(s)X(t − s)ds

Z +∞

−∞

h(r)X(t + τ − r)dr

�

=

Z +∞

−∞

Z +∞

−∞

h(s)h(r)E[X(t − s)X(t + τ − r)]dsdr

=

Z +∞

−∞

Z +∞

−∞

h(s)h(r)RX(τ + s − r)dsdr

→ depends only on τ .

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Analysis and Processing of Random Signals 30

Power Spectral Density of the Output

• Taking the transform of RY (τ) we have

SY (f) =

Z +∞

−∞

RY (τ)e−j2πfτ
dτ

=
Z +∞

−∞

Z +∞

−∞

Z +∞

−∞

h(s)h(r)RX(τ + s − r)e−j2πfτ
dsdrdτ.

Changing variables and letting u = τ + s − r, we have

SY (f) =

Z +∞

−∞

Z +∞

−∞
Z +∞

−∞

h(s)h(r)RX(u)e−j2πf(u−s+r)
dsdrdu

=

Z +∞

−∞

h(s)ej2πfs
ds

Z +∞

−∞

h(r)e−j2πfr
dr

Z +∞

−∞

RX(u)e−j2πfu
du

= H
∗(f)H(f)SX(f)

= |H(f)|2SX(f).
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• Mean and autocorrelation function of Y (t) are not

sufficient to determine probabilities of events involving

Y (t).

• If the input is a Gaussian WSS process, the output is

also a Gaussian WSS process which is completely

specified by the mean and autocorrelation function of

Y (t).

• It can be shown that

RY,X(τ) = RX(τ) ∗ h(τ);

SY,X(τ) = H(f)SX(f);

SX,Y (f) = S∗
Y,X(f) = H∗(f)SX(f).
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Example: Find the power spectral density of the output

of a linear, time-invariant system whose input is a white

noise process.

Sol: Let X(t) be the input process with

SX(f) =
N0

2
for all f.

The power spectral density of the output Y (t) is then

SY (f) = |H(f)|2
N0

2
.

• One can generate WSS processes with arbitrary power

spectral density SY (f) by passing a white noise through

a system with transfer function H(f) =
√

SY (f).
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Example: Let Z(t) = X(t) + Y (t)

Find the output W (t) if Z(t) is input into an ideal lowpass

filter shown below:
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Sol: The power spectral density of the output W (t) is

SW (f) = |HLP (f)|2SX(f) + |HLP (f)|2SY (f) = SX(f).

Thus, W (t) has the same power spectral density as X(t). This does

not imply that W (t) = X(t). To show that W (t) = X(t), in the mean

square sense, consider D(t) = W (t) − X(t). Then

RD(τ) = RW (τ) − RWX(τ) − RXW (τ) + RX(τ).

The corresponding power spectral density is

SD(f) = SW (f) − SWX(f) − SXW (f) + SX(f)

= |HLP (f)|2SX(f) − HLP (f)SX(f) − H
∗

LP (f)SX(f) + SX(f)

= 0.

Therefore RD(τ) = 0 for all τ , and W (t) = X(t) in the mean square
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sense since

E[(W (t) − X(t))2] = E[D2(t)] = RD(0) = 0.
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Discrete-Time Systems

• Unit-sample response hn is the response of a

discrete-time LTI system to the input

δn =

{

1 n = 0

0 n 6= 0
.

• The response of the system to Xn is given by

Yn = hn ∗ Xn =
∞

∑

j=−∞

hjXn−j =
∞

∑

j=−∞

hn−jXj.
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• Transfer function of such system is defined by

H(f) =
∞

∑

i=−∞

hie
−j2πfi.

• If Xn is a WSS process, then Yn is also a WSS process.

• The mean of Yn is given by

mY = mX

∞
∑

j=−∞

hj = mXH(0).

• The autocorrelation of Yn is given by

RY (k) =
∞

∑

j=−∞

∞
∑

i=−∞

hjhiRX(k + j − i)
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• The power spectral density of Yn is given by

SY (f) = |H(f)|2SX(f).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Analysis and Processing of Random Signals 40

Example: An autoregressive moving average (ARMA)

process is defined by

Yn = −

q
∑

i=1

αiYn−i +

p
∑

i′=0

βi′Wn−i′ ,

where Wn is a WSS, white noise input process. The

transfer function can be shown to be

H(f) =

∑p
i′=0 βi′e

−j2πfi′

1 +
∑q

i=1 αie−j2πfi
.

The power spectral density of the ARMA process is

SY (f) = |H(f)|2σ2
W .
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7.3 Amplitude Modulation By Random Signals

• The purpose of a modulator is to map the information

signal A(t) into a transmission signal X(t).

• A(t) is a WSS random Process.

• A(t) is a low-pass signal.
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• Amplitude modulation (AM) is given by

X(t) = A(t) cos(2πfct + Θ),

where Θ is a random variable that is uniformly

distributed in the interval (0, 2π) and Θ and A(t) are

independent.

• The autocorrelation of X(t) is given by

E[X(t + τ)X(t)]

= E[A(t + τ) cos(2πfc(t + τ) + Θ)A(t) cos(2πfct + Θ)]

= RA(τ)E

[

1

2
cos(2πfct) +

1

2
cos(2πfc(2t + τ) + 2Θ)

]

=
1

2
RA(τ) cos(2πfcτ).
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• X(t) is also a WSS random process.

• The power spectral density of X(t) is

SX(f) = F

{

1

2
RA(τ) cos(2πfcτ)

}

=
1

4
SA(f + fc) +

1

4
SA(f − fc).
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• Demodulation is performed as

Y (t) = X(t)2 cos(2πfct).

We have

SY (f) =
1

2
SX(f + fc) +

1

2
SX(f − fc)
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=
1

2
{SA(f + 2fc) + SA(f)} +

1

2
{SA(f) + SA(f − 2fc)} .

• The ideal lowpass filter passes SA(f) and blocks

SA(f ± 2fc).

• The output of the lowpass filter has power spectral

density

SY (f) = SA(f).

• It can be shown that Y (t) = X(t).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Analysis and Processing of Random Signals 48

Quadrature Amplitude Modulation (QAM)

• QAM signal is given by

X(t) = A(t) cos(2πfct + Θ) + B(t) sin(2πfct + Θ),

where A(t) and B(t) are real-valued.

• We require that

RA(τ) = RB(τ);

RB,A(τ) = −RA,B(τ).

• SA(f) = SB(f) is a real-valued, even function of f

• It cab be shown that SB,A(f) is a purely imaginary odd function

of f .
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• The autocorrelation function is given by

RX(τ) = RA(τ) cos(2πfcτ) + RB,A(τ) sin(2πfcτ).

• The power spectral density is

SX(f) =
1

2
SA(f − fc) + SA(f + fc)+

1

2j
{SBA(f−fc)−SBA(f+fc)}.

• Bandpass random signals arise in communication systems when

wide-sense stationary white noise is filtered by bandpass filters.

• Let N(t) be such process with power spectral density SN (f).

Then we have

N(t) = Nc(t) cos(2πfct + Θ) − Ns(t) sin(2πfct + Θ),

Graduate Institute of Communication Engineering, National Taipei University
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where Nc(t) and Ns(t) are jointly wide-sense stationary processes

with

SNc
(f) = SNs

(f) = {SN (f − fc) + SN (f + fc)}L

and

SNc,Ns
(f) = j{SN (f − fc) − SN (f + fc)}L,

where the subscript L denotes the lowpass portion of the

expression in brackets.

Example: The received signal in an AM system is

Y (t) = A(t) cos(2πfct + Θ) + N(t),

where N(t) is a bandlimited white noise process with spectral density

SN (f) =







N0

2
|f ± fc| < W

0 elsewhere.
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Find the signal to noise ration of the received signal.

Sol: We can represent the received signal by

Y (t) = {A(t) + Nc(t)} cos(2πfct + Θ) − Ns(t) sin(2πfct + Θ).

The AM demodulator is used to recover A(t). After multiplication by

2 cos(2πfct + Θ), we have

2Y (t) cos(2πfct + Θ) = {A(t) + Nc(t)}{1 + cos(4πfct + 2Θ)}

−Ns(t) sin(4πfct + 2Θ).

After lowpass filtering, the recovered signal is A(t) + Nc(t). The

power in the signal and noise components, respectively, are

σ2
A =

∫ W

−W

SA(f) df
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σ2
Nc

=

∫ W

−W

SNc
(f) df =

∫ W

−W

(

N0

2
+

N0

2

)

df

= 2WN0.

The output signal-to-noise ratio is then

SNR =
σ2

A

2WN0

.
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7.4 Optimal Linear Systems

• By observing {Xt−a, . . . , Xt, . . . , Xt+b} to obtain an

estimate Yt of the desire process Zt.

• The estimate Yt is required to be linear:

Yt =
t+b
∑

β=t−a

ht−βXβ =
a

∑

β=−b

hβXt−β.

• Mean square error is given by

E[e2
t ] = E[(Zt − Yt)

2].
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• We seek to find the optimal filter, which is

characterized by the impulse response hβ that

minimizes the mean square error.
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Example: Assume that the desired signal is corrupted by

noise:

Xα = Zα + Nα.

We are interested in estimating Zt. The observation

interval is I.

1. If I = (−∞, t) or I = (t − a, t), we have a filtering

problem.

2. If I = (−∞,∞), we have a smoothing problem.

3. If I = (t − a, t − 1), we have a prediction problem.
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The Orthogonality Condition

• Optimal filter must satisfy the orthogonality

condition:

E[etXα] = E[(Zt − Yt)Xα] = 0 for all α ∈ I

or

E[ZtXα] = E[YtXα] for all α ∈ I.

• We can find that

E[ZtXα] = E

[

a
∑

β=−b

hβXt−βXα

]

for all α ∈ I
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=
a

∑

β=−b

hβE[Xt−βXα]

=
a

∑

β=−b

hβRX(t − α − β) for all α ∈ I.

• Xα and Zt are jointly wide-sense stationary. Therefore,

we have

RZ,X(t − α) =
a

∑

β=−b

hβRX(t − β − α).

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Analysis and Processing of Random Signals 58

• Letting m = t−α, we obtain the following key equation

RZ,X(m) =
a

∑

β=−b

hβRX(m − β) − b ≤ m ≤ a.

We have a + b + 1 linear equations.
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Continuous-time Estimation

• Use Y (t) to estimate the desired signal Z(t):

Y (t) =

∫ t+b

t−a

h(t − β)X(β)dβ =

∫ a

−b

h(β)X(t − β)dβ.

• It can be shown that the filter h(β) that minimizes the

mean square error is specified by

RZ,X(τ) =

∫ a

−b

h(β)RX(τ − β)dβ − b ≤ τ ≤ a.

The equation can be solved numerically.
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• Determine the mean square error of the optimum filter

as follows. The error et and estimate Yt are orthogonal:

E[etYt] = E
[

et

∑

ht−βXβ

]

=
∑

ht−βE[etXβ] = 0.

• The mean square error is then

E[e2
t ] = E[et(Zt − Yt)] = E[etZt];

E[e2
t ] = E[(Zt − Yt)Zt] = E[ZtZt] − E[YtZt]

= RZ(0) − E[ZtYt]

= RZ(0) − E[Zt

a
∑

β=−b

hβXt−β]
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= RZ(0) −
a

∑

β=−b

hβRZ,X(β).

• For continuous case we have

E[e2(t)] = RZ(0) −

∫ a

−b

h(β)RZ,X(β)dβ.
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Theorem: Let Xt and Zt be discrete-time, zero-mean,

jointly wide-sense stationary processes, and let Yt be an

estimate for Zt of the form

Yt =
a

∑

β=−b

hβXt−β.

The filter that minimize E[(Zt − Yt)
2] satisfies the equation

RZ,X(m) =
a

∑

β=−b

hβRX(m − β) − b ≤ m ≤ a

and has mean square error given by

E[(Zt − Yt)
2] = RZ(0) −

a
∑

β=−b

hβRZ,X(β).
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Example: Observing

Xα = Zα + Nα α ∈ I = {n − p, . . . , n − 1, n}.

Find the set of linear equations for the optimal filter if Zα

and Nα are independent linear processes.

Sol: We have

RZ,X(m) =

p
∑

β=0

hβRX(m − β) m ∈ {0, 1, . . . , p}.

The cross-correlation terms are

RZ,X(m) = E[ZnXn−m] = E[Zn(Zn−m + Nn−m)] = RZ(m).

The autocorrelation terms are given by

RX(m − β) = E[Xn−βXn−m] = E[(Zn−β + Nn−β)(Zn−m + Nn−m)]
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= RZ(m − β) + RZ,N (m − β)

+RN,Z(m − β) + RN (m − β)

= RZ(m − β) + RN (m − β).

The p + 1 linear equations are then

RZ(m) =

p
∑

β=0

hβ{RZ(m−β)+RN(m−β)} m ∈ {0, 1, . . . , p}.

Example: Let Zα be a first-order autoregressive process

with average power σ2
Z and parameter r with |r| < 1 and

Nα is a white noise with average power σ2
N . Find the set of

equations for the optimal filter.

Sol: The autocorrelation for a first-order autoregressive
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process is given by

RZ(m) = σ2
Zr|m| m = 0,±1,±2, . . . .

The autocorrelation for the white noise is

RN(m) = σ2
Nδ(m).

We have the p + 1 linear equations as

σ2
Zr|m| =

p
∑

β=0

hβ{σ
2
Zr|m−β| + σ2

Nδ(m − β)} m ∈ {0, . . . , p}.
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Divide both sides by σ2
Z and Let Γ = σ2

N/σ2
Z , we have
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Prediction

• We want to predict Zn in terms of Zn−1, Zn−2, . . . , Zn−p:

Yn =

p
∑

β=1

hβZn−β.

• For this problem Xα = Zα so we have

RZ(m) =

p
∑

β=1

hβRZ(m − β) m ∈ {1, . . . , p}.

In matrix form (Yule-Walker equations) the
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equations become26666664 RZ(1)

RZ(2)

...

RZ(p)
37777775 =

26666664 RZ(0) RZ(1) · · · RZ(p − 1)

RZ(1) RZ(0) · · · RZ(p − 2)

...
...

...
...

RZ(p − 1) RZ(p − 2) · · · RZ(0)

3777777526666664 h1

h2

...

hp

37777775

= R h.

• The mean square error becomes

E[e2
n] = RZ(0) −

p
∑

β=1

hβRZ(β).

• We can solve h by inverting the p × p matrix RZ .

• It can also be solved by Levinson algorithm.

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Analysis and Processing of Random Signals 69

Estimation Using the Entire Realization of the

Observed Process

• We want to estimate Zt by Yt:

Yt =
∞

∑

β=−∞

hβXt−β.

• For continuous-time random process, we have

Y (t) =

∫ +∞

−∞

h(β)X(t − β)dβ.

• The optimum filters are then

RZ,X(m) =
∞

∑

β=−∞

hβRX(m − β) for all m;
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RZ,X(τ) =

∫ +∞

−∞

h(β)RX(τ − β)dβ for all τ .

• Taking Fourier transform of both sides we get

SZ,X(f) = H(f)SX(f).

• The transfer function of the optimal filter is then

H(f) =
SZ,X(f)

SX(f)
;

h(t) = F−1{H(f)}.

• h(t) may be noncausal.
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