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8.1 Markov Processes.

e A random process X () is a Markov process if the

future of the process given the present is independent
of the past. That is, if for arbitrary times
b <tg <+ <t <trr1, we have

— For discrete-valued Markov processes

P[X(tk_H) — Zlﬁk+1’X(tk) — Ly« - - ,X( ) — 5131]
= P[X(te1) = 21| X (Tr) = 245

— For continuous-valued Markov process
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— P[CL < X(tk+1) < b|X(tk) — xk]

e The pdf of a Markov process is given by

fX(tk_|_1)(xk'—|—1‘X(tk) — ajk, . o 7X(t1) — le)
— fX(tk-l—l)(xk—Fl‘X(tk) — xk)
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Example: Consider the sum process:

Sn:Xl_I_XQ—I__I_Xn: n—l—l_Xny

where the X;’s are an iid sequence. S5,, is a Markov process

since

P[Sn_H = Sn_|_1|5n — Sny..., Sl = 81] P[Xn_|_1 — Sn+4+1 — Sn]

P[Sn—l—l — 5n—|—1|Sn — Sn]-

Graduate Institute of Communication Engineering, National Taipei University



Y. S. Han Markov Chains

Example: Consider the moving average of a Bernoulli

sequence:

1
Yn — §(Xn + Xn—l)a

where X; are independent Bernoulli sequence with p = 1/2.
We show that Y, is not a Markov process. The pmf of Y, is

= P[X, =0,X, 1 =0]=1/4,

PlY,=1/2] = P[X,=0,X,1=1+P[X,=1,X,_;=0
1/2

= P[X,=1,X,_,=1]=1/4.
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Now consider
PlY,=1Y,1=1/2]
PlY, 1 =1/2]

PY, = 1|Y,_; = 1/2)

A7 _ )

1/2

Suppose that we have additional knowledge about past,
then

PV, = 1|V, 1 = 1/2,Y, 5 = 1]

 PlY,=1Y,.,=1/2,Y, ,=1] .
B PlY, 1=1/2,Y, o=1]
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Thus

PV, =1|Y,_1 = 1/2] # P[Y, = 1|Yy_1 = 1/2,Y, 5 = 1].
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e A integer-valued Markov random process is called a
Markov chain.

e If X(¢) is a Markov chain for t3 > t5 > t;, then we have

P[X(tg) = ZEg,X(tQ) = ZEz,X(tl) = 1]

= P[X(l3) = 23| X (t2) = 22| P[X (l2) = 22| X (t1) = 21| P[X (1) = 21]

e In general,
P[X(tk_|_1) = CIJk+1,X(tk) — Tk, .- - ,X(tl) = xl]
= P[X(k+1) = 2o [ X (k) = 2| P[X (tr) = 2p| X (th—1) = Tp—1] - -
XP[X(tQ) = xg‘X(tl) = a:l]P[X(t1) = 331].
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8.2 DISCRETE-TIME MARKOV CHAINI

e Let X, be a discrete-time integer-valued Markov chain
that starts at n = 0 with pmf

p;(0) =P Xo=yj], Jj=0,1,2,....

e The joint pmf of the first n 4+ 1 values is

PlXn = in,...,Xo = io]

e Assume that the one-step state transition probabilities
are fixed and do not change with time (homogeneous
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transition probability), that is,

P[Xn_|_1 — ]‘Xn — ’L] — Dij for all n.

e The joint pmf for X,,, X,,_1,..., X is then given by
PIXy = tn, ..., Xo = 10| = Pi,_1in " Pio,irPio (0)-

e X, is completely specified by the initial pmf p;(0) and
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the matrix of one-step transition probabilities P:

Poo Po1 Po2
Pio P11 P12

e P is called transition probability matrix.

e Fach row of P must add to one since

1=) PXpn=jlX,=i=)> py.
' J

J
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Example: A Markov model for speech:

e T'wo states: silence and speech activity
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Example: Let S, be the binomial counting process. In

one step, 5,, can either stay the same or increase by one.

The transition probability can be given by
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The n-step transition probabilities

o Let P(n) ={pij(n)} be the matrix of n-step transition

probabilities, where

pij(n) = P Xpix =Jj| X =14 n=>0,475>0.

e Since transition probabilities do not depend on time,
we have

P[X, s = j| X3 = 4] = P[X,, = j|Xo = i].

e Consider the two-step transition probabilities:

PlX:=7,X1 =k Xo =i
P[Xo = i]

P Xs=73,X1 =k|Xo=1] =
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P[X2 = j|X1 = K]P[X1 = k| Xo = i]P[Xo = i]
[Xo = 1]

P[X2 = j|X1 = k]P[X1 = k| Xo = i]
pik(1)pr; (1).

P
P

e 2-step transition probabilities are given by
pij(2) = P|X;=j|Xo=1
= Y P[Xy=j, X1 =klXo =]
k

= Zpik(l)pkj(l)a

e Therefore,
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e In general, we have
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State Probabilities

e Let p(n) denote the row vector of state probabilities at
time n. The probability p;(n) is related to p(n — 1) by

p;(n) ZP[Xn = | X1 = i|P[Xp_1 = 1]

Zpijpi(n — 1)-

e In matrix notation we have
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e p;(n) is related to p(0) by

pj(n)
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Example: Let o = 1/10 and g = 1/5 for the following
Markov chain:

4
53 (TG o
S e s

e

Find P(n) for n = 2 and 4.

09 0.1 [ 0.83 0.17 |
0.2 08 0.34 0.66

P? =
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[ 0.83 0.17 |

 0.34 0.66
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Steady State Probabilities

e As n — oo, the n-step transition probability matrix
approaches a matrix in which all the rows are equal to
the same pmft

p”(n) — Ty tor all .

o Asn — o

pj(n) = sz'jpz'(@) — Z%‘pz‘(o) = Tj.

e As n becomes large, the probability of state 5
approaches a constant independent of time and the
initial state probabilities (equilibrium or steady state).
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o Let the pmf m = {7;}. By noting that as n — oo,

pj(n) — m; and p;(n — 1) — m;, we have
Ty = Zpijﬂ-ia
which in matrix notation is
T =7PF (n — 1 linearly independent equations).

e The additional equation needed is provided by
Z m; — 1.

e 7 is called the stationary state pmt of the Markov
chain.
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o If we start with p(0) = 7, then

p(n) =mwP" =m — a stationary process.
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Example: Find the stationary state pmf for the following

Markov chain:

Sol: we have

Graduate Institute of Communication Engineering, National Taipei University

23



Y. S. Han Markov Chains

Since mg + m = 1,

Ty — ﬁﬂ'l — ﬁ(l — 7'('0).

15} o)

o = ———, " = ———.
0 a+ 0 ! a+ 0

Graduate Institute of Communication Engineering, National Taipei University

24



