Cyclic Codes

Yunghsiang S. Han

Department of Electrical Engineering, National Taiwan University of Science and Technology Taiwan

E-mail: yshan@mail.ntust.edu.tw

Description of Cyclic Codes

• If the components of an *n*-tuple $v = (v_0, v_1, \ldots, v_{n-1})$ are cyclically shifted *i* places to the right, the resultant *n*-tuple would be

$$
\bm{v}^{(i)}=(v_{n-i},v_{n-i+1},\ldots,v_{n-1},v_0,v_1,\ldots,v_{n-i-1}).
$$

- *•* Cyclically shifting *v i* places to the right is equivalent to cyclically shifting v *n* $-i$ places to the left.
- *•* An (*n, k*) linear code *C* is called a *cyclic code* if every cyclic shift of a code vector in *C* is also a code vector in *C*.
- Code polynomial $v(x)$ of the code vector v is defined as

$$
\boldsymbol{v}(x) = v_0 + v_1 x + \cdots + v_{n-1} x^{n-1}.
$$

$$
\bullet \ \ \mathbf{v}^{(i)}(x) = x^i \mathbf{v}(x) \bmod x^n + 1.
$$

.

Proof: Multiplying
$$
\mathbf{v}(x)
$$
 by x^i , we obtain
\n
$$
x^i \mathbf{v}(x) = v_0 x^i + v_1 x^{i+1} + \dots + v_{n-i-1} x^{n-1} + \dots + v_{n-1} x^{n+i-1}
$$
\nThen we manipulate the equation into the following form:
\n
$$
x^i \mathbf{v}(x) = v_{n-i} + v_{n-i+1} x + \dots + v_{n-1} x^{i-1} + v_0 x^i + \dots + v_{n-i-1} x^{n-1} + v_{n-i} (x^n + 1) + v_{n-i+1} x (x^n + 1)
$$
\n
$$
+ \dots + v_{n-1} x^{i-1} (x^n + 1)
$$
\n
$$
= q(x) (x^n + 1) + \mathbf{v}^{(i)}(x),
$$

where $q(x) = v_{n-i} + v_{n-i+1}x + \cdots + v_{n-1}x^{i-1}$.

- The nonzero code polynomial of minimum degree in a cyclic code *C* is unique.
- Let $g(x) = g_0 + g_1 x + \cdots + g_{r-1} x^{r-1} + x^r$ be the nonzero code polynomial of minimum degree in an (*n, k*) cyclic code *C*. Then the constant term g_0 must be equal to 1.

Proof: Suppose that $g_0 = 0$. Then

$$
g(x) = g_1x + g_2x^2 + \cdots + g_{r-1}x^{r-1} + x^r
$$

= $x(g_1 + g_2x + \cdots + g_{r-1}x^{r-2} + x^{r-1}).$

If we shift $g(x)$ cyclically $n-1$ places to the right (or one place to the left), we obtain a nonzero code polynomial, $g_1 + g_2 x + \cdots + g_{r-1} x^{r-2} + x^{r-1}$, which has a degree less than

r. Contradiction.

• Consider the polynomial $x\mathbf{g}(x), x^2\mathbf{g}(x), \ldots, x^{n-r-1}\mathbf{g}(x)$. Clearly, they are cyclic shifts of $g(x)$ and hence code polynomials in *C*. Since *C* is linear, a linear combination of $\boldsymbol{g}(x), x\boldsymbol{g}(x), \ldots, x^{n-r-1}\boldsymbol{g}(x),$

$$
\boldsymbol{v}(x) = u_0 \boldsymbol{g}(x) + u_1 x \boldsymbol{g}(x) + \cdots + u_{n-r-1} x^{n-r-1} \boldsymbol{g}(x) \n= (u_0 + u_1 x + \cdots + u_{n-r-1} x^{n-r-1}) \boldsymbol{g}(x),
$$

is also a code polynomial where $u_i \in \{0, 1\}$ *.*

• Let $g(x) = 1 + g_1 x + \cdots + g_{r-1} x^{r-1} + x^r$ be the nonzero code polynomial of minimum degree in an (*n, k*) cyclic code *C*. A binary polynomial of degree $n-1$ or less is a code polynomial *if and only if* it is a multiple of *g*(*x*).

Proof: Let $v(x)$ be a binary polynomial of degree $n-1$ or less. Suppose that $v(x)$ is a multiple of $g(x)$. Then

$$
\mathbf{v}(x) = (a_0 + a_1x + \cdots + a_{n-r-1}x^{n-r-1})\mathbf{g}(x)
$$

$$
= a_0\boldsymbol{g}(x) + a_1x\boldsymbol{g}(x) + \cdots + a_{n-r-1}x^{n-r-1}\boldsymbol{g}(x).
$$

Since $v(x)$ is a linear combination of the code polynomials, $g(x), xg(x), \ldots, x^{n-r-1}g(x)$, it is a code polynomial in C . Now let $v(x)$ be a code polynomial in *C*. Dividing $v(x)$ by $g(x)$, we obtain

$$
\boldsymbol{v}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x) + \boldsymbol{b}(x),
$$

where the degree of $\boldsymbol{b}(x)$ is less than the degree of $\boldsymbol{g}(x)$. Since $v(x)$ and $a(x)g(x)$ are code polynomials, $b(x)$ is also a code polynomial. Suppose $\mathbf{b}(x) \neq 0$. Then $\mathbf{b}(x)$ is a code polynomial with less degree than that of $g(x)$. Contradiction.

- *•* The number of binary polynomials of degree *n −* 1 or less that are multiples of $g(x)$ is 2^{n-r} .
- There are total of 2^k code polynomials in C , $2^{n-r} = 2^k$, i.e., $r = n - k$.

- *•* The polynomial *g*(*x*) is called the *generator polynomial* of the code.
- The degree of $g(x)$ is equal to the number of parity-check digits of the code.
- The generator polynomial $g(x)$ of an (n, k) cyclic code is a factor of $x^n + 1$.

Proof: We have

$$
x^k\boldsymbol{g}(x) = (x^n + 1) + \boldsymbol{g}^{(k)}(x).
$$

Since $g^{(k)}(x)$ is the code polynomial obtained by shifting $g(x)$ to the right cyclically *k* times, $g^{(k)}(x)$ is a multiple of $g(x)$. Hence,

$$
x^n + 1 = \{x^k + a(x)\}\mathbf{g}(x).
$$

• If $g(x)$ is a polynomial of degree $n - k$ and is a factor of $x^n + 1$, then $g(x)$ generates an (n, k) cyclic code.

Y. S. Han Cyclic codes 8

Proof: A linear combination of $g(x), xg(x), \ldots, x^{k-1}g(x)$, $v(x) = a_0 g(x) + a_1 x g(x) + \cdots + a_{k-1} x^{k-1} g(x)$ $= (a_0 + a_1x + \cdots + a_{k-1}x^{k-1})g(x),$

is a polynomial of degree $n-1$ or less and is a multiple of $g(x)$. There are a total of 2^k such polynomial and they form an (n, k) linear code.

Let $\mathbf{v}(x) = v_0 + v_1 x + \cdots + v_{n-1} x^{n-1}$ be a code polynomial in this code. We have

$$
x\mathbf{v}(x) = v_0x + v_1x^2 + \dots + v_{n-1}x^n
$$

= $v_{n-1}(x^n + 1) + (v_{n-1} + v_0x + \dots + v_{n-2}x^{n-1})$
= $v_{n-1}(x^n + 1) + \mathbf{v}^{(1)}(x).$

Since both $xv(x)$ and $x^n + 1$ are divisible by $g(x)$, $v^{(1)}$ must be divisible by $g(x)$. Hence, $v^{(1)}(x)$ is a code polynomial and the code generated by $g(x)$ is a cyclic code.

• Suppose that the message to be encoded is $u = (u_0, u_1, \ldots, u_{k-1})$. Then

$$
x^{n-k}u(x) = u_0x^{n-k} + u_1x^{n-k+1} + \dots + u_{k-1}x^{n-1}
$$

Dividing $x^{n-k}u(x)$ by $g(x)$, we have

$$
x^{n-k}u(x) = a(x)g(x) + b(x).
$$

Since the degree of $g(x)$ is $n - k$, the degree of $b(x)$ must be $n-k-1$ or less. Then

$$
\boldsymbol{b}(x) + x^{n-k}\boldsymbol{u}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x)
$$

is a multiple of $g(x)$ and therefore it is a code polynomial.

$$
\mathbf{b}(x) + x^{n-k} \mathbf{u}(x) = b_0 + b_1 x + \dots + b_{n-k-1} x^{n-k-1} + u_0 x^{n-k} + u_1 x^{n-k+1} + \dots + u_{k-1} x^{n-1}
$$

.

then corresponds to the code vector

$$
(b_0, b_1, \ldots, b_{n-k-1}, u_0, u_1, \ldots, u_{k-1}).
$$

• In general, *G* is not in systematic form. However, it can be put into systematic form with row operation.

• Let

$$
x^n + 1 = g(x)h(x),
$$

where the polynomial $h(x)$ has the degree k and is of the following form:

$$
h(x) = h_0 + h_1 x + \dots + h_k x^k
$$

with $h_0 = h_k = 1$.

- *•* A parity-check matrix of *C* may be obtained from *h*(*x*).
- Let *v* be a code vector in *C* and $v(x) = a(x)g(x)$. Then

$$
\mathbf{v}(x)\mathbf{h}(x) = \mathbf{a}(x)\mathbf{g}(x)\mathbf{h}(x) \n= \mathbf{a}(x)(x^n + 1) \n= \mathbf{a}(x) + x^n \mathbf{a}(x).
$$

Since the degree of $a(x)$ is $k-1$ or less, the powers $x^k, x^{k+1}, \ldots, x^{n-1}$ do not appear in $a(x) + x^n a(x)$. Therefore,

$$
\sum_{i=0}^{k} h_i v_{n-i-j} = 0 \text{ for } 1 \le j \le n-k.
$$

We take the *reciprocal* of $h(x)$,

$$
x^k \mathbf{h}(x^{-1}) = h_k + h_{k-1}x + h_{k-2}x^2 + \cdots + h_0x^k,
$$

and can see that $x^k h(x^{-1})$ is also a factor of $x^n + 1$. $x^k h(x^{-1})$ then generates an $(n, n - k)$ cyclic code with the following $(n - k) \times n$ matrix as a generator matrix:

 $H =$ Γ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} *h*_k *h*_k−1 *h*_{k−2} · · · · · · · *h*₀ 0 0 · · · 0 0 *hk hk−*¹ *hk−*² *· · · · h*0 0 *· ·* 0 0 0 *hk hk−*¹ *· · · · · h*0 *· ·* 0 *· · · · · ·* 0 0 *· ·* 0 *hk hk−*¹ *hk−*² *· · · · h*0 T \mathbf{I} \mathbf{I}

Then *H* is a parity-check matrix of the cyclic code *C*. We call *h*(*x*) the *parity polynomial* of *C*.

- Let *C* be an (n, k) cyclic code with generator polynomial $g(x)$. The dual code of *C* is also cyclic and is generated by the polynomial $x^k h(x^{-1})$, where $h(x) = (x^n + 1)/g(x)$.
- *•* Let

$$
x^{n-k+i} = a_i(x)g(x) + b_i(x)
$$
 for $0 \le i \le k - 1$,

where
$$
\mathbf{b}_i(x) = b_{i0} + b_{i1} + \cdots + b_{i(n-k-1)}
$$
. Since $\mathbf{b}_i(x) + x^{n-k+i}$ are multiples of $\mathbf{g}(x)$, they are code polynomials. Then

$$
G = \begin{bmatrix} b_{00} & b_{01} & b_{02} & \cdots & b_{0(n-k-1)} & 1 & 0 & 0 & \cdots & 0 \\ b_{10} & b_{11} & b_{12} & \cdots & b_{1(n-k-1)} & 0 & 1 & 0 & \cdots & 0 \\ b_{20} & b_{21} & b_{22} & \cdots & b_{2(n-k-1)} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots \\ b_{(k-1)0} & b_{(k-1)1} & b_{(k-1)2} & \cdots & b_{(k-1)(n-k-1)} & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.
$$

 $\bullet\,$ The corresponding parity-check matrix for \boldsymbol{C} is

$$
H = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & b_{00} & b_{10} & b_{20} & \cdots & b_{(k-1)0} \\ 0 & 1 & 0 & \cdots & 0 & b_{01} & b_{11} & b_{21} & \cdots & b_{(k-1)1} \\ 0 & 0 & 1 & \cdots & 0 & b_{02} & b_{12} & b_{22} & \cdots & b_{(k-1)2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & b_{0(n-k-1)} & b_{1(n-k-1)} & b_{2(n-k-1)} & \cdots & b_{(k-1)(n-k-1)} \end{bmatrix}
$$

Department of Electrical Engineering, National Taiwan University of Science and Technology

.

Encoding of Cyclic Codes

• Encoding process: (1) Multiply *u*(*x*) by *x n−k* ; (2) divide x^{n-k} *u*(*x*) by $g(x)$; (3) form the code word $b(x) + x^{n-k}u(x)$.

Example

• Consider the $(7, 4)$ cyclic code generated by $g(x) = 1 + x + x^3$. Suppose that the message $u = (1 \ 0 \ 1 \ 1)$ is to be encoded. The contents in the register are as follows: Input Register contents 0 0 0 (initial state) 1 1 1 0 (first shift)

 $A_{\rm eff}$ four shifts, the contents of the register are (1 0). Thus, the complete are (1 0). Thus, the complete are (1 0 After four shifts, the contents of the register are (1 0 0). Thus the complete code vector is (1 0 0 1 0 1 1).

Encoding by Parity Polynomial

• Since $h_k = 1$, we have

$$
v_{n-k-j} = \sum_{i=0}^{k-1} h_i v_{n-i-j} \text{ for } 1 \le j \le n-k,
$$

which is known as a *difference equation*.

$$
v_{n-k-1} = h_0 v_{n-1} + h_1 v_{n-2} + \dots + h_{k-1} v_{n-k} = u_{k-1} + h_1 u_{k-2} + \dots + h_{k-1} u_0
$$

$$
v_{n-k-2} = u_{k-2} + h_1 u_{k-3} + \dots + h_{k-1} v_{n-k-1}
$$

Example

• The parity polynomial of the $(7, 4)$ cyclic code generated by $g(x) = 1 + x + x^3$ is

$$
h(x) = \frac{x^7 + 1}{1 + x + x^3} = 1 + x + x^2 + x^4.
$$

The encoding circuit:

Suppose that the message to be encoded is $(1\ 0\ 1\ 1)$. Then $v_3 = 1, v_4 = 0, v_5 = 1, v_6 = 1$. The parity-check digits are

$$
v_2 = v_6 + v_3 + v_4 = 1 + 1 + 0 = 0
$$

\n
$$
v_1 = v_5 + v_4 + v_3 = 1 + 0 + 1 = 0
$$

\n
$$
v_0 = v_4 + v_3 + v_2 = 0 + 1 + 0 = 1.
$$

The code vector that corresponds to the message (1 0 1 1) is (1 0 0 1 0 1 1).

Syndrome Computation

- Let $\mathbf{r} = (r_0, r_1, \ldots, r_{n-1})$ be the received vector. The *syndrome* $\text{is calculated as } \boldsymbol{s} = \boldsymbol{r} \cdot \boldsymbol{H}^T, \text{ where } \boldsymbol{H} \text{ is the parity-check matrix.}$
- *•* If syndrome is not identical to zero, *r* is not a code vector and the presence of errors has been detected.
- *•* Dividing *r*(*x*) by the generator polynomial *g*(*x*), we obtain

$$
\boldsymbol{r}(x) = \boldsymbol{a}(x)\boldsymbol{g}(x) + \boldsymbol{s}(x).
$$

- If *C* is a systematic code, then the syndrome is simply the vector sum of the received parity digits and the parity-check digits recomputed from the received information digits.
- Let $s(x)$ be the syndrome of a received polynomial $r(x)$. Then the remainder $s^{(1)}(x)$ resulting from dividing $xs(x)$ by the generator polynomial $g(x)$ is the syndrome of $r^{(1)}(x)$, which is a cyclic shift of $r(x)$.

Proof: We have

$$
x\bm{r}(x) = r_{n-1}(x^n + 1) + \bm{r}^{(1)}(x).
$$

Then

$$
\mathbf{c}(x)\mathbf{g}(x) + \mathbf{\rho}(x) = r_{n-1}\mathbf{g}(x)\mathbf{h}(x) + x[\mathbf{a}(x)\mathbf{g}(x) + \mathbf{s}(x)],
$$

where $\rho(x)$ is the remainder resulting from dividing $r^{(1)}(x)$ by *g*(*x*). Then $\rho(x)$ is the syndrome of $r^{(1)}(x)$. Rearranging the

above equation, we have

$$
xs(x) = [\mathbf{c}(x) + r_{n-1}\mathbf{h}(x) + x\mathbf{a}(x)]\mathbf{g}(x) + \mathbf{\rho}(x).
$$

It is clearly that $\rho(x)$ is also the remainder resulting from dividing $xs(x)$ by $g(x)$. Therefore, $\rho(x) = s^{(1)}(x)$.

• The remainder $s^{(i)}(x)$ resulting from dividing $x^{i}s(x)$ be the generator polynomial $g(x)$ is the syndrome of $r^{(i)}(x)$, which is the *i*th cyclic shift of $r(x)$.

Example

Consider the (7,4) cyclic code generated by $g(x) = 1 + x + x^3$. Suppose that the received vector is $r = (0\ 0\ 1\ 0\ 1\ 1\ 0)$. The syndrome of r is $s = (1 \ 0 \ 1)$. As the received vector is shifted into

the circuit, the contents in the register are as follows:

If the register is shifted once more with the input gate disabled, the new contents will be $s^{(1)} = (1\ 0\ 0)$, which is the syndrome of $\bm{r}^{(1)} = (0 \; 0 \; 0 \; 1 \; 0 \; 1 \; 1).$

We may shift the received vector $r(x)$ into the syndrome register from the right end. However, after the entire $r(x)$ has been shifted into the register, the contents in the register do not form the sybdrome of $r(x)$; rather, they form the syndrome $s^{(n-k)}(x)$ of $r^{(n-k)}(x)$.

Proof: We have

$$
x^{n-k}r(x) = a(x)g(x) + \rho(x).
$$

It is known that

$$
x^{n-k}r(x) = b(x)(x^n + 1) + r^{(n-k)}(x).
$$

Hence,

$$
\boldsymbol{r}^{(n-k)}(x) = [\boldsymbol{b}(x)\boldsymbol{h}(x) + \boldsymbol{a}(x)]\boldsymbol{g}(x) + \boldsymbol{\rho}(x).
$$

When $r^{(n-k)}(x)$ is divided by $g(x)$, $\rho(x)$ is also the remainder. Therefore, $\rho(x)$ is indeed the syndrome of $r^{(n-k)}(x)$.

Error Detection

• Let $v(x)$ be the transmitted code word and $e(x) = e_0 + e_1 x + \cdots + e_{n-1} x^{n-1}$ be the error pattern. Then

$$
\boldsymbol{r}(x) = \boldsymbol{v}(x) + \boldsymbol{e}(x) = \boldsymbol{b}(x)\boldsymbol{g}(x) + \boldsymbol{e}(x).
$$

• Following the definition of syndrome, we have

$$
\boldsymbol{e}(x) = [\boldsymbol{a}(x) + \boldsymbol{b}(x)]\boldsymbol{g}(x) + \boldsymbol{s}(x).
$$

This shows that the syndrome is actually equal to the remainder resulting from dividing the error pattern by the generator polynomial.

- The decoder has to estimate $e(x)$ based on the syndrome $s(x)$.
- If $e(x)$ is identical to a code vector, $e(x)$ is an undetectable error pattern.
- The error-detection circuit is simply a syndrome circuit with an

OR gate with the syndrome digits as inputs.

- *•* For a cyclic code, an error pattern with errors confined to *i* high-order positions and $\ell - i$ low-order positions is also regarded as a burst of length *ℓ* or less. such a burst is called *end-around* burst.
- *•* An (*n, k*) cyclic code is capable of detecting any error burst of length $n - k$ or less, including the end-around bursts.

Proof: Suppose that the error pattern is a burst of length of $n - k$ or less. Then

 $e(x) = x^j B(x),$

where $0 \leq j \leq n-1$ and $\boldsymbol{B}(x)$ is a polynomial of degree $n-k-1$ or less. Since the degree of $B(x)$ is less than that of $g(x)$, $B(x)$ is not divisible by $g(x)$. Since $g(x)$ is a factor of $x^n + 1$ and *x* is not a factor of $g(x)$, $g(x)$ and x^j must be relatively prime. Therefore, $e(x)$ is not divisible by $g(x)$. The

last part of the above statement is left as an exercise.

• The fraction of undetectable bursts of length *n − k* + 1 is 2 *−*(*n−k−*1) *.*

Proof: Consider the bursts of length $n - k + 1$ starting from the *i*th digit position and ending at the $(i + n - k)$ th digit position. There are 2*ⁿ−k−*¹ such burst. Among these bursts, the only one that cannot be detected is

$$
\boldsymbol{e}(x) = x^i \boldsymbol{g}(x).
$$

Therefore, the fraction of undetectable bursts of length $n - k + 1$ starting from the *i*th digit position is $2^{-(n-k-1)}$.

• For *ℓ > n − k* + 1, the fraction of undetectable error bursts of length ℓ is $2^{-(n-k)}$. The proof is left as an exercise.

Decoding of Cyclic Codes

- Decoding of linear codes consists of three steps: (1) syndrome computation; (2) association of the syndrome to an error pattern; (3) error correction.
- The cyclic structure of a cyclic code allows us to decode a received vector $r(x)$ in serial manner.
- The received digits are decoded one at a time and each digit is decoded with the same circuitry.
- *•* The decoding circuit checks whether the syndrome *s*(*x*) corresponds to a correctable error pattern $e(x)$ with an error at the highest-order position x^{n-1} (i.e., $e_{n-1} = 1$).
- If $s(x)$ does not correspond to an error pattern with $e_{n-1} = 1$, the received polynomial and the syndrome register are cyclically shifted once simultaneously. By doing this, we have $r^{(1)}(x)$ and $s^{(1)}(x)$.

- The second digit r_{n-2} of $r(x)$ becomes the first digit of $r^{(1)}(x)$. The same decoding processes.
- If the syndrome $s(x)$ of $r(x)$ does correspond to an error pattern with an error at the location x^{n-1} , the first received digit r_{n-1} is an erroneous digit and it must be corrected by taking the sum $r_{n-1} \oplus e_{n-1}$.
- This correction results in a modified received polynomial, denoted by

 $r_1(x) = r_0 + r_1x + \cdots + r_{n-2}x^{n-2} + (r_{n-1} \oplus e_{n-1})x^{n-1}.$

- *•* The effect of the error digit *eⁿ−*¹ on the syndrome can be achieved by adding the syndrome of $e'(x) = x^{n-1}$ to $s(x)$.
- The syndrome $s_1^{(1)}$ $_1^{(1)}$ of $\boldsymbol{r}_1^{(1)}$ $I_1^{(1)}(x)$ is the remainder resulting from dividing $x[s(x) + x^{n-1}]$ by the generator polynomial $g(x)$.
- Since the remainders resulting from dividing $xs(x)$ and x^n by

 $g(x)$ are $s^{(1)}(x)$ and 1, respectively, we have

$$
s_1^{(1)}(x) = s^{(1)}(x) + 1.
$$

Example

Consider the decoding of the (7*,* 4) cyclic code generated by $g(x) = 1 + x + x^3$. This code has minimum distance 3 and is capable of correcting any single error. The seven single-error patterns and their corresponding syndromes are as follows:

Suppose that the code vector $\mathbf{v} = (1\ 0\ 0\ 1\ 0\ 1\ 1)$ is transmitted and $r = (1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1).$

Meggitt Decoder II

- *•* To decode a cyclic code, the received polynomial *r*(*x*) may be shifted into the syndrome register from the right end for computing the syndrome.
- When $r(x)$ has been shifted into the syndrome register, the ${\rm register\ contains\ }$ ${\bf s}^{(n-k)}(x)$, which is the syndrome of ${\bf r}^{(n-k)}(x)$. If $s^{(n-k)}(x)$ corresponds to an error pattern $e(x)$ with $e_{n-1} = 1$, the highest-order digit r_{n-1} of $r(x)$ is erroneous and must be corrected.
- In $r^{(n-k)}(x)$, the digit r_{n-1} is at the location x^{n-k-1} . When r_{n-1} is corrected, the error effect must be removed from $s^{(n-k)}(x).$
- The new syndrome $s_1^{(n-k)}$ $\mathbf{A}^{(n-k)}(x)$ is the sum of $\mathbf{s}^{(n-k)}(x)$ and the remainder $\rho(x)$ resulting from dividing x^{n-k-1} by $g(x)$. Since

the degree of x^{n-k-1} is less than the degree of $g(x)$,

$$
s_1^{(n-k)}(x) = s^{(n-k)}(x) + x^{n-k-1}.
$$

Example

Again, we consider the decoding of the (7*,* 4) cyclic code generated by $g(X) = 1 + X + X^3$. Suppose that the received polynomial $r(X)$ is shifted into the syndrome register from the right end. The seven single-error patterns and their corresponding syndromes are as follows:

We see that only when $e(X) = X^6$ occurs, the syndrome is (0 0 1) after the entire received polynomial $r(X)$ has been shifted into the

syndrome register. If the single error occurs at the location X^i with $i \neq 6$, the syndrome in the register will not be $(0 0 1)$ after the entire received polynomial $r(X)$ has been shifted into the syndrome register. However, another $6 - i$ shifts, the syndrome register will contain (0 0 1). Based on this fact, we obtain another decoding circuit for the $(7, 4)$ cyclic code generated by $g(X) = 1 + X + X^3$.

