
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 1

A Class of Rateless Reed-Solomon Codes with
Near-Linear Computational Complexities

Leilei Yu, Sian-Jheng Lin, Member, IEEE, and Yunghsiang S. Han, Fellow, IEEE

Abstract—This paper proposes a class of rateless Reed-
Solomon (RLRS) codes with near-linear encoding/decoding com-
plexities. Like fountain codes, the RLRS codes can generate
a reasonably large number of encoded packets in packet-level
transmissions. Furthermore, the RLRS codes are maximum dis-
tance separable (MDS) codes that always maintain zero reception
overhead. In the proposed RLRS codes, the preservative field
extensions are realized through Cantor’s field tower, which avoids
searching some quadratic irreducible polynomials as in the prior
RLRS codes based on Cauchy generator matrices. Additionally,
the proposed RLRS codes are based on Vandermonde generator
matrices, whereby the LCH transforms, a variant of fast Fourier
transforms (FFTs) over binary extension fields, can be employed
to reduce the encoding/decoding complexity. To further improve
computational efficiency, this paper also proposes a scheduling
scheme for the LCH transforms to generate encoded packets
on demand, instead of generating packets whose number must
be a power of two. Analysis shows that compared to the prior
approach, the used field tower leads to a lower speed of computa-
tional complexity growth caused by field extensions. In addition,
with the total number of source packets to be transmitted
being k, analysis shows that the proposed RLRS codes have
the encoding/decoding complexity O(log2 k) per source packet,
superior to O(k) in the prior approach.

Index Terms—Fountain codes, rateless codes, Reed-Solomon
codes, zero reception overhead, computational complexities.

I. INTRODUCTION

INTERNET is a real-world model of the binary erasure
channel (BEC), in which data is specified to be transmitted

in the form of packets [1], [2]. Ensuring reliable transmission
of packets over the Internet has been a hot research topic
in recent decades. Among various topics, Automatic Repeat
Request (ARQ), which sends a re-transmission request once
an error has been detected, is a typical strategy used in
communication protocols, such as the ubiquitous TCP/IP [3].
However, ARQ is unsuitable for many scenarios, such as data
transmission over heavily impaired channels or multicasting in
which data are transmitted to multiple destinations. To solve
these issues, coding-based schemes are developed [4]–[11].

The coding-based schemes encode k source packets into
n = k+ t packets, and then all source packets can be decoded
(recovered) from any n̄ (≥ k) out of n encoded packets. Note
that any decoding mentioned in this paper defaults to erasure

This work was supported by the National Key Research and Development
Program of China under Grant 2022YFA1004902, the National Natural
Science Foundation of China under Grant 62071446. (Corresponding author:
Sian-Jheng Lin)

L. Yu and Y. S. Han are with the Shenzhen Institute for Advanced Study,
University of Electronic Science and Technology of China, Shenzhen, China
(e-mail: yuleilei@uestc.edu.cn, yunghsiangh@gmail.com). S.-J. Lin is an
independent researcher (e-mail: sjhenglin@gmail.com).

decoding. Conventionally, k/n is called the code rate and
n̄−k is called the reception overhead. To ensure reliable data
transmissions, the code rate is generally determined according
to prior knowledge of channel quality. In 2002, a digital
fountain approach was introduced [8] to automatically adapt
the channel without any channel knowledge. Based on this
approach, the sender can continuously send encoded packets
until receiving an acknowledgment message from the receiver,
i.e., n can be theoretically infinite. The coding scheme based
on this approach is called a fountain code or rateless code,
and it is particularly suitable for channels with unstable
quality. LT codes were the first practical realization of rateless
codes [7], and Raptor codes were their significant theoretical
and practical improvement [9]. In particular, Raptor codes
have high computational efficiency due to their per-source
packet encoding and decoding complexities of constant orders.
Nevertheless, it is well known that the above codes cannot
guarantee zero reception overhead [12], [13]. For several ap-
plications, such as P2P file sharing, the bandwidth is typically
the most constrained resource [14], making codes with zero
reception overhead more preferable. To design rateless codes
with zero reception overhead, Reed-Solomon (RS) codes were
considered a potential candidate [15].

RS codes are a well-known class of maximum distance
separable (MDS) codes, which always offer zero reception
overhead [16]. Despite their advantage in terms of reception
overhead, they are constructed over finite fields so that the
total number of encoded packets cannot exceed the size of
the chosen finite field [17]. In other words, the code rate
of RS codes is bounded by the field size, resulting in their
inability to be used as rateless codes like the ones mentioned
above. To address this issue, [18], [19] suggested cycling the
encoded packets generated by RS codes, but the advantage
of zero reception overhead is lost. In [15], by introducing
preservative field extensions, the authors proposed rateless
RS (RLRS) codes to produce some encoded packets exceeding
the size of the chosen finite field while maintaining zero
reception overhead. The RLRS codes proposed in [15] are
based on Cauchy generator matrices, leading to per-source
packet encoding and decoding complexities of both O(k),
which are much higher than those of the above rateless codes.

To reduce the computational complexities of RLRS codes,
some fast algorithms for RS codes could be utilized. Indeed,
the conventional RS encoding and decoding algorithms have
the total computational complexities of quadratic orders. By
using fast polynomial arithmetic [20], one can encode and
decode RS codes in O(n log22 n log2 log2 n) [21]. In [22],
based on fast Walsh-Hadamard transforms, Didier proposed

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 2

RS encoding and decoding algorithms with the computational
complexities of O(n log2 n) and O(n log22 n), respectively.
Furthermore, Lin et al. in [23], [24] proposed a variant of fast
Fourier transforms (FFTs) over binary extension fields, termed
LCH transforms, and then extended Didier’s work based
on them to develop O(n log2 k) encoding and O(n log2 n)
decoding algorithms [25]. The above algorithms form the
lowest computational complexities for RS codes by far. All
of the above motivates us to propose a class of RLRS codes
that offers low computational complexities.

In this paper, the proposed RLRS codes are based on the
following ideas. To begin with, a total of k source packets
are encoded using an RS code over the finite field F2M ,
capable of generating up to 2M encoded packets. When the
channel is bad, such that the received packets are not enough
for decoding, a conventional way is that the sender uses
RS codes over a larger finite field. As the new RS codes
use a different finite field, the previously encoded packets
cannot be used in decoding. However, according to [15], the
packets generated by the old RS code, i.e., (2M , k) RS code
over F2M , is equivalent to the first 2M packets generated
by the new RS code, i.e., (22M , k) RS code over F22M , if
F22M is a preservative field extension of F2M . Based on this
property, the previously encoded packets are still valid in
decoding the (22M , k) RS code. In packet-level transmissions,
the preservative field extension can be used several times
until a sufficient number of encoded packets are generated.
In contrast to [15], the RLRS codes proposed in this paper
use Vandermonde generator matrices to construct RS codes
rather than the Cauchy generator matrices [15]. This leads to
the result that fast polynomial arithmetic can be used in RLRS
encoding and decoding algorithms to reduce computational
complexities.

In this paper, simulations were also conducted to demon-
strate the performance of different rateless codes, such as the
proposed RLRS codes, Cauchy-based RLRS codes [15], and
RaptorQ [26]. Note that the RaptorQ is the most advanced
Raptor code, and it is implemented by an open-source library
on Github [27]. The results show that the proposed RLRS
codes perform significantly better than the Cauchy-based
RLRS codes as the total number of source packets k or the
packet loss probability ϵ increases. Particularly, the proposed
RLRS code performs better than the RaptorQ when the number
of source packets is small. This offers the possibility for the
proposed RLRS codes to replace RaptorQ in short codes, as
the former can always successfully decode while maintaining
zero reception overhead, while the latter cannot. The main
contributions of this paper are summarized as follows.

1) This paper proposes a new construction of the RLRS
codes based on Vandermonde generator matrices. In par-
ticular, Cantor’s field tower realizes the preservative field
extensions that are the core of constructing RLRS codes.
This avoids finding quadratic irreducible polynomials as
in [15] and leads to a lower speed of computational
complexity growth caused by field extensions than that
in [15].

2) This paper presents an LCH-based encoding/decoding
algorithm for the proposed RLRS codes.

3) This paper proposes a scheduling scheme for the LCH
transform to generate encoded packets on demand, avoid-
ing unexpected computation costs of the LCH transform
that always produce burst outputs.

4) This paper analyzes the computational complexities of
the proposed RLRS codes. The analysis results show
that both of the per-source packet encoding and de-
coding complexities of the proposed RLRS codes are
O(log2 k), improving the prior result O(k) based on the
Cauchy-based RLRS codes. Simulations show that the
performance of the proposed RLRS codes is competitive
compared to that of other rateless codes.

The remainder of this paper is organized as follows: The
necessary backgrounds, including finite fields and RS codes,
are introduced in Sec. II. Section III proposes a new class
of RLRS codes and presents the corresponding fast encod-
ing/decoding algorithm. In Sec. IV, a scheduling scheme
is presented to enable encoded packets to be generated on
demand. Complexity analysis is given in Sec. V. Simulations
and comparisons are given in Sec. VI. Finally, Sec. VII
concludes this paper.

II. PRELIMINARIES: FINITE FIELDS & REED-SOLOMON
CODES

Throughout this paper, N denotes the set of whole numbers
and (· · · i2i1i0)2 denotes the binary representation of i, where
i =

∑
j∈N ij · 2j . Additionally, any bold lowercase letter is

considered a row vector by default. For any two integers i < j,
i, j ∈ N, we use [i, j) to denote the set {i, i+1, · · · , j−1}, and
use a[i, j) = (ai, ai+1, · · · , aj−1) to denote the sub-vector of
a = (a0, a1, a2, · · ·). Due to the focus on erasure channels, the
decoding mentioned in this paper defaults to erasure decoding
rather than error-correction decoding [28].

A. Binary extension fields

This section introduces the binary extension fields used in
the proposed RLRS codes. Precisely, Cantor in [29] introduced
a specific sequence u0, u1, u2, · · · of elements from algebraic
closure of binary field F2 to construct the field tower

F22 :=F2 [u0] /(u
2
0 + u0 + 1),

F24 :=F22 [u1] /(u
2
1 + u1 + u0),

F28 :=F24 [u2] /(u
2
2 + u2 + u1u0),

...

(1)

Unless otherwise stated, suppose that m is a positive integer
and M = 2m, then the field tower above leads to

F2M = F2(u0, u1, · · · , um−1). (2)

The Cantor basis of the above F2M can be denoted by vM =
(v0, v1, · · · , vM−1), where

vi = u
im−1

m−1 · · ·u
i1
1 ui0

0 with i = (im−1 · · · i1i0)2. (3)

For instance, the Cantor basis of F28 is

v8 = (1, u0, u1, u1u0, u2, u2u0, u2u1, u2u1u0). (4)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 3

After that, each element in F2M can be denoted by ωi =∑M−1
j=0 ij · vj , where i = (iM−1 · · · i1i0)2 and 0 ≤ i < 2M .

Subsequently, Lemma 1 and Lemma 2 can be easily obtained.

Lemma 1. For any i ∈ N, 0 = u2
i + ui + v2i−1.

Proof. It is easy to derive from (1) and (3).

Lemma 2. For any 0 ≤ i < 2ℓ, ωi+2ℓ = ωi + ω2ℓ , where
i ∈ N, ℓ ∈ N.

Proof. Let i = (iℓ−1 · · · i1i0)2, then ωi+2ℓ =
∑ℓ−1

j=0 ij · vj +
vℓ = ωi + ω2ℓ .

The above provides some basic information about Cantor’s
field tower. The following describes the definition of preser-
vative field extension [15], which is the key to constructing
RLRS codes and will be used in Sec. III.

Definition 1. Assume that a, b ∈ F2q with z = a · b ∈ F2q ,
and

a = (a0, a1, · · · , aq−1) ∈ Fq
2

b = (b0, b1, · · · , bq−1) ∈ Fq
2

z = (z0, z1, · · · , zq−1) ∈ Fq
2

(5)

denote the corresponding binary vectors of a, b, z, respectively.
Let Q = 2q and a′, b′, b′′ ∈ F2Q that keep the binary vectors
of a, b unchanged subject to a zero-padding

a′ = (0, 0, · · · , 0, a0, a1, · · · , aq−1) ∈ FQ
2

b′ = (0, 0, · · · , 0, b0, b1, · · · , bq−1) ∈ FQ
2

b′′ = (b0, b1, · · · , bq−1, 0, 0, · · · , 0) ∈ FQ
2 ,

(6)

where a′,b′,b′′ respectively denote the binary vectors of
a′, b′, b′′. Then F2Q is said to be a preservative field extension
of F2q if and only if the resultant binary vectors from a′ · b′
and a′·b′′ are respectively (0, 0, · · · , 0, z0, z1, · · · , zq−1) ∈ FQ

2

and (z0, z1, · · · , zq−1, 0, 0, · · · , 0) ∈ FQ
2 .

B. Reed-Solomon codes

The conventional viewpoint of RS codes is to map the coef-
ficient vector of a polynomial to the corresponding evaluation
vector [16]. More precisely, given a k-element information
vector c = (c0, c1, · · · , ck−1) ∈ Fk

2M , where k < 2M , the
corresponding polynomial is defined as c(x) =

∑k−1
i=0 cix

i.
Then the (n, k) RS codeword for c is the evaluation vector of
c(x) at n distinct points, i.e.,

r = (c(ω0), c(ω1), · · · , c(ωn−1)) . (7)

Clearly, k < n ≤ 2M due to the fact that F2M has at most
2M distinct points. For convenience, (7) can be rewritten as
the following matrix form

rT = G · cT, (8)

where G is a generator matrix and has the Vandermonde form

G =


1 ω0 ω2

0 · · · ωk−1
0

1 ω1 ω2
1 · · · ωk−1

1
...

...
...

. . .
...

1 ωn−1 ω2
n−1 · · · ωk−1

n−1

 . (9)

For the systematic RS codes, the information vector c to
codeword vector r is reorganized as follows.

(i) Determine the coefficient vector of c(x) by making
{c(ωi) = ci}k−1

i=0 , where c(x) is of degree less than k.
(ii) Calculate the codeword r according to rT = G · fT,

where f is the coefficient vector of c(x) determined in
the previous step.

The RS code above is systematic since the first step ensures
that r[0, k) = c. In Step (i), the coefficient vector of c(x)
can be uniquely determined, and various methods can be used
to achieve this. For instance, a plain method is to solve the
Vandermonde linear system whose coefficient matrix consists
of the first k rows in G. The plain method results in the
computational complexity of O(k2) if the lower-upper (LU)
decomposition proposed in [30] is used. Lagrange interpo-
lation is another commonly used method that can complete
Step (i) with the complexity of O(k log22 k) if the base field
supports FFTs [31].

It can be known from [31] that the FFT is an efficient
tool to convert the coefficient vector of a polynomial into
the corresponding evaluation vector, and inverse FFT (IFFT)
performs the inverse process. In 2014, based on a special
polynomial basis X, termed Lin-Chung-Han (LCH) basis, the
authors proposed a variant of FFT/IFFT over binary exten-
sion fields [23]. Similar to conventional FFT/IFFTs, k-point
LCH/ILCH transforms achieves O(k log2 k) in both additive
and multiplicative complexities [23]–[25]. To improve the
computational complexities, this paper uses the LCH/ILCH
transforms to complete Steps (i) and (ii) in the encoding
process. In such, generating n output symbols with the k-point
LCH/ILCH transform requires only the total computational
complexity of O(n log2 k) [23]–[25].

The decoding process of systematic (n, k) RS codes essen-
tially obtains the first k point-value pairs from any k point-
value pairs of c(x). The details are as follows.

(i) Determine the coefficient vector of c(x) through the
known k point-value pairs.

(ii) Calculate r[0, k) = (c(ω0), c(ω1), · · · , c(ωk−1)).
Similarly, the first step can be accomplished by solving a
Vandermonde linear system or Lagrange interpolation, both
of which have the same complexities as before. To reduce the
computational complexities, Lin et al. in [23], [25] introduced
a fast algorithm that employs the LCH/ILCH transforms
mentioned above to complete the entire decoding process.
This algorithm possesses the total computational complexity of
O(n log2 n) and will be utilized in this paper. For convenience,
some notations about LCH/ILCH transforms are defined below
for later use.

Generally, if fX denotes the coefficient vector of f(x) ∈
F2d [x] in the LCH basis X, where deg(f(x)) < k and d, k
are both power of two, then we use LCH2d(fX, k, β) to denote
the LCH transform for computing the evaluation vector

r = (f(ω0 + β), · · · , f(ωk−1 + β)), (10)

where β ∈ F2d . Briefly, r =LCH2d(fX, k, β). Furthermore,
we use ILCH2d(r, k, β) to denote the corresponding ILCH
transform such that fX =ILCH2d(r, k, β).

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 4

TABLE I
DEFINITIONS OF SOME IMPORTANT NOTATIONS

Symbol Definition
k the total number of source packets.
B individual packet size (in bits), and B = 2b.

F2M the initial field, where M = 2m < B.
F22M the preservative field extension of F2M .
fi(x) fi(x) ∈ F2M [x] is the i-th initial evaluated polynomial with degree less than k, where i ∈ [0, B/M).
gi(x) gi(x) = um · f2i(x) + f2i+1(x) ∈ F22M [x] is the i-th new evaluated polynomial with degree less than k, where i ∈ [0, B/(2M)).
fi fi ∈ Fk

2M
is the coefficient vector of fi(x), where i ∈ [0, B/M).

gi gi = um · f2i + f2i+1 ∈ Fk
22M

is the coefficient vector of gi(x), where i ∈ [0, B/(2M)).
F the matrix consisting of all initial coefficient vectors, i.e., F = (fT0 , · · · , fT

B/M−1
).

G the generator matrix of (n, k) RS code given in (9).
R the matrix consisting of polynomial evaluations, i.e., R = G · F .

Fig. 1. Schematic diagram of k source packets.

III. PROPOSED RATELESS REED-SOLOMON CODES

Based on the field tower given in (1), this section proposes
a new construction of the RLRS codes. The corresponding fast
encoding and decoding algorithms are then presented. Some
important notations used in this section are listed in TABLE I.

A. Proposed construction

To begin with, assume that there are k source packets to be
transmitted, and k is a power of two (if not, it is easy to align
by appending empty packets). Suppose that each packet has
B = 2b > M bits; it can be considered as the packet has B/M
symbols in F2M . Recall the RS codes described in Sec. II-B,
B/M evaluated polynomials of a systematic (n, k) RS code
over F2M , denoted by f0(x), f1(x), · · · , fB/M−1(x), can be
determined from the k source packets. Fig. 1 provides a
schematic diagram where each column forms an information
vector and generates an evaluated polynomial according to
the first step of RS encoding. Formally, let the coefficient
vector of fi(x) be denoted by fi ∈ Fk

2M , where i ∈ [0, B/M).
The following formula can be obtained according to the RS
encoding described in Sec. II-B:

R = G · F, (11)

where G is shown in (9), F = (fT0 , fT1 , · · · , fTB/M−1) ∈
Fk× B

M

2M
, and

R =


f0(ω0) · · · fB/M−1(ω0)
f0(ω1) · · · fB/M−1(ω1)

...
. . .

...
f0(ωn−1) · · · fB/M−1(ωn−1)

 ∈ Fn× B
M

2M
. (12)

In such, n encoded packets in the (n, k) RS codes correspond
to n rows in R. The upper part of Fig. 2 shows an example of
n = 2M . As mentioned earlier, the total number of encoded
packets generated by the traditional RS code is limited since
n cannot exceed the size of F2M .

To increase the number of encoded packets beyond the size
of the initial (current) finite field, one can generate B/(2M)
new evaluated polynomials with degree less than k according
to the following formula

gi(x) = um·f2i(x)+f2i+1(x) ∈ F22M [x], 0 ≤ i < B/(2M),
(13)

where F22M comes from the field tower in (1). It is easy to
see that the coefficient vector of each new polynomial gi(x),
denoted by gi, can be calculated via

gi = um · f2i + f2i+1 ∈ Fk
22M , (14)

where um ·f2i means shifting the binary representation of each
element in f2i to the high order M bits (zeros being padded
at the low order M bits). Now, more polynomial evaluations
shown in the lower part of Fig. 2 can be obtained because
each new evaluated polynomial gi(x) is in F22M [x]. We next
demonstrate that the B/(2M) new polynomials evaluating at
x = ω0, ω1, · · · , ω2M−1 yield the same results as the 2M

encoded packets shown in the upper part of Fig. 2. This
results in all encoded packets being considered as constructed
solely from (22M , k) RS codes over F22M , such that all
source packets can be reconstructed using only conventional
(22M , k) RS decoding.

Specifically, for 0 ≤ i < B/(2M) and 0 ≤ j < 2M , we
have

gi(ωj) = um · f2i(ωj) + f2i+1(ωj) ∈ F22M . (15)

Lemma 3 shows F22M is a preservative field extension of
F2M . This indicates that in (15), the result of f2i(ωj) in F22M

is the same as that in F2M , f2i+1(ωj) as well. The binary
representation of each gi(ωj) in (15) is formed by simply con-
catenating the binary representations of f2i(ωj) and f2i+1(ωj)
in F2M . From the above, all packets in the upper part of Fig. 2
can be regarded as composed of the evaluation vectors of
g0(x), g1(x), · · · , gB/(2M)−1(x) at x = ω0, ω1, · · · , ω2M−1.

Lemma 3. For any i ∈ N, F22i+1 is the preservative field
extension of F22i when F22i and F22i+1 are both from the
field tower in (1).

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 5

Fig. 2. Schematic diagram of proposed RLRS codes in packet-level transmission.

Proof. Consider that a ∈ F22i and b ∈ F22i with z = a · b ∈
F22i . As shown in Definition 1, let a′, b′, b′′ ∈ F22i+1 that keep
the binary vectors of a, b unchanged subject to a zero-padding.
From the field tower in (1), we have that

a′ = 0 · ui + a, b′ = 0 · ui + b. (16)

Let b = b0v0 + b1v1 + · · ·+ b2i−1v2i−1. Then we have b′′ =
b0v2i +b1v2i+1+ · · ·+b2i−1v2i+1−1. From (3), b′′ = b0uiv0+
b1uiv1+ · · ·+b2i−1uiv2i−1 = b ·ui+0. It is easy to know that
a′ ·b′ = 0 ·ui+z and a′ ·b′′ = z ·ui+0. Hence, the conditions
in Definition 1 are met. This completes the proof.

Essentially, the above method is to convert R ∈ Fn× B
M

2M
, G ∈

Fn×k
2M

, F ∈ Fk× B
M

2M
in (11) into R ∈ Fn× B

2M

22M
, G ∈ Fn×k

22M
, F ∈

Fk× B
2M

22M
while maintaining the results of (11) in F2M . After

applying the field extension b−m times, the matrices R,G, F
in (11) can finally be converted to the finite field F2B , such
that the total number of encoded packets achieves 2B . Here, B
is the size of a single packet. Typically, B is much larger than
M . For instance, the initial finite field of RS code is often set
to F28 (i.e., M = 8, initial field symbols are bytes), and the
size of encoded packet B is at least a few hundred bytes [32].
This means that the initial RS code can be extended many
times. Importantly, the work [15] has demonstrated that it is
enough to extend the initial RS code only once in practice.
As stated in [15], when M = 8 and k = 100, the probability
of decoding failure after one extension is less than 10−160,
even if the packet loss probability is 0.99 in BEC. This shows
that the field expansion by more than twice is meaningless for
practical applications.

B. Fast algorithms
This subsection presents fast encoding and decoding algo-

rithms for the proposed RLRS codes by using the LCH/ILCH

transforms introduced in Sec. II-B.
1) Encoding: As mentioned earlier, the LCH/ILCH trans-

forms require that the input polynomial is represented over a
special basis X. Let FX = (fTX,0, f

T
X,1, · · · , fTX,B/M−1) ∈ Fk× B

M

2M

denote the matrix consisting of all initial coefficient vectors
over the basis X. The evaluation matrix R in (11) can be
calculated through the LCH transforms with the input FX.
Given k source packets of size B = 2b bits each, the encoding
steps of the proposed RLRS code are as follows:

(i) Sender determines the coefficient vectors
fTX,0, f

T
X,1, · · · , fTX,B/M−1 from the k source packets.

Precisely, let the k source packets consist of B/M
information vectors c0, c1, · · · cB/M−1, where each ci is
a column in Fig. 1. Then calculate

fX,i = ILCH2M (ci, k, 0), for i ∈ [0, B/M). (17)

(ii) Let ℓ take 1, 2, · · · , 2M

k − 1 in turn, the sender calculates

ri[ℓk, (ℓ+ 1)k) = LCH2M (fX,i, k, ωℓk), i ∈ [0, B/M),

and then sends each generated encoded packet to the
receiver. The process is terminated once the acknowledg-
ment message from the receiver is obtained.

(iii) If the sender cannot receive the acknowledgment message
in the previous step, let r′i = um · r2i + r2i+1 and
gX,i = um · fX,2i + fX,2i+1 for any i ∈ [0, B

2M). The
sender calculates

r′i[ℓk, (ℓ+ 1)k) = LCH22M (gX,i, k, ωℓk), i ∈ [0,
B

2M
)

(18)
by letting ℓ take 2M

k , · · · , 22M

k − 1 in turn. The sender
sends the generated encoded packet to the receiver one
at a time until it receives the acknowledgment message
from the receiver.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 6

Fig. 3. Flow graph of 8-point LCH transform with five output symbols (all
solid dots are the symbols that need to be calculated, and the hollow dots are
the symbols that do not need to be calculated).

In Step (iii), the new coefficient vector gX,i can be extended
to a larger finite field if the receiver still cannot successfully
receive k encoded packets. However, it is unlikely that more
than one extension is required in real applications.

2) Decoding: Let the ID of the last successfully received
encoded packet be n− 1 when the receiver collects exactly k
encoded packets. One can easily derive that all final evaluated
polynomials with degrees less than k are in F2n̂ [x], where n̂ =
2⌈log2 log2 n⌉. After that, all encoded packets can be considered
as generated by (n, k) RS codes over F2n̂ and a total of B/n̂
codewords need to be decoded. The decoding of the RLRS
code is no different from that of the traditional RS code over
F2n̂ , so we directly adopt the decoding algorithm given in [23],
[25].

IV. SCHEDULING SCHEME FOR LCH TRANSFORMS

Like other rateless codes, the RLRS encoder should produce
encoded packets one by one. However, the encoding algo-
rithm proposed in the previous section calculates polynomial
evaluations via k-point LCH transforms. Thus, this generates
k encoded packets in each encoding round. When the total
number of generated packets n is not a multiple of k, the
proposed encoding contains many unnecessary operations (in-
versely proportional to n mod k). To improve the computa-
tion efficiency, this section proposes a scheduling scheme that
enables the output symbols of k-point LCH transforms to be
generated as needed. As a result, the output symbols of k-point
LCH transforms are generated in order.

To begin with, let k = 2k0 , where k0 ∈ N. From [23],
the k-point LCH transform flow graph consists of k0 layers.
More precisely, each layer of k-point LCH transform has k
nodes, and all output symbols are in layer k0 (e.g. 8-point
LCH transform is shown in Fig. 3). Let ℓ be the number of
output symbols the k-point LCH transform needs to output in
order. Here, 0 ≤ ℓ ≤ k. We use Hi

k(ℓ) to denote the number
of nodes calculated in layer i of the k-point LCH transform
with ℓ output symbols. Obviously, we have Hi

k(k) = k and
Hi

k(0) = 0 for any i = 1, 2, · · · , k0. In the following, we first
give the specific formula of Hi

k(ℓ), where 0 < ℓ < k and
1 ≤ i ≤ k0, and then show the relationship between Hi

k(ℓ)
and Hi

k(ℓ+1). This relationship helps us to produce required
output symbols via a k-point LCH transform.

Fig. 4. First layer of 8-point LCH transform with ℓ = (ℓ2ℓ1ℓ0)2 output
symbols (s is defined in (19)).

Let the binary representation of ℓ be (ℓk0−1 · · · ℓ0)2, and

s = min{i | ℓi ̸= 0,∀i ∈ [0, k0)}, (19)

where 0 < ℓ < k. The form of Hi
k(ℓ) can be deduced as

follows. For the first layer, at least the first 2k0−1 nodes must
be calculated. Whether the last 2k0−1 nodes in the first layer
need to be calculated depends on the values of s and ℓk0−1.
An example of k = 8 is shown in Fig. 4. Obviously, if ℓ2 = 0
or s = 2, then H1

8 (ℓ) = 4; Otherwise, H1
8 (ℓ) = 8. It is not

difficult to check that

H1
k(ℓ) =

{
2k0−1 + ℓk0−1 · 2k0−1, if s < k0 − 1,

2k0−1, if s = k0 − 1.
(20)

Another example of 8-point LCH transform with five output
symbols is shown in Fig. 3. As k0 = 3 and 5 = (101)2, then
s = 0. Immediately, one can see from (20) that H1

8 (5) = 8.
For the second layer, the number of nodes that need to

be calculated is determined by ℓk0−1 and H1
k
2

(ℓ′), where
ℓ′ = (ℓk0−2 · · · ℓ0)2. More precisely, H2

k(ℓ) is the sum of
ℓk0−12

k0−1 and H1
k
2

(ℓ′). Since H1
k
2

(ℓ′) can be obtained from
(20), then

H2
k(ℓ) ={
ℓk0−1 · 2k0−1 + (2k0−2 + ℓk0−2 · 2k0−2), if s < k0 − 2,

ℓk0−1 · 2k0−1 + 2k0−2, if s = k0 − 2.
(21)

As shown in the example of Fig. 3, the number of nodes to
be calculated in layer 2 is the sum of four and H1

4 (1), where
H1

4 (1) = 2. Thus, we have H2
8 (5) = 6.

By analogy, for i ∈ {2, · · · , k0 − s}, the number of
nodes that need to be calculated in layer i is determined by
{ℓk0−j}i−1

j=1 and H1
2k0−i+1(ℓ

′′), where ℓ′′ = (ℓk0−i · · · ℓ0)2.
Then,

Hi
k(ℓ) = ℓk0−1 · 2k0−1 + ℓk0−2 · 2k0−2

+ · · ·+ ℓk0−i+1 · 2k0−i+1 +H1
2k0−i+1(ℓ

′′),
(22)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 7

where ℓ′′ = (ℓk0−i · · · ℓ0)2. Using (20), the above formula can
be reformulated as

Hi
k(ℓ) =


(∑k0−1

j=k0−i+1 ℓj · 2j
)
+
(
2k0−i + ℓk0−i · 2k0−i

)
,

2 ≤ i < k0 − s,(∑k0−1
j=k0−i+1 ℓj · 2j

)
+ 2k0−i, i = k0 − s.

=

{
2k0−i +

∑k0−1
j=k0−i ℓj · 2j , 2 ≤ i < k0 − s,

ℓ, i = k0 − s.
(23)

Formula (23) leads to H3
8 (5) = 5 in Fig. 3. The above shows

the number of nodes needed to be calculated for the first k0−s
layers. For each of the remaining s layers, the number of nodes
to be calculated is always ℓ because {ℓi = 0}s−1

i=0 . In summary,
Hi

k(ℓ) can be organized as the following

Hi
k(ℓ) =


2k0−i +

k0−1∑
j=k0−i

ℓj · 2j , i = 1, · · · , k0 − s− 1,

ℓ, i = k0 − s, · · · , k0 .
(24)

The following considers the case of increasing the number
of output symbols of k-point LCH transform one by one.
When ℓ is an odd number, adding one output symbol to the
k-point LCH transform with ℓ output changes the number of
nodes needed to be calculated in the last layer. In this case,

Hi
k(ℓ+ 1) =

{
Hk

i (ℓ), if i = 1, 2, · · · , k0 − 1,

Hk
k (ℓ) + 1, if i = k0.

(25)

We consider below the case where ℓ is an even number.
When ℓ = 0, Hi

k(ℓ + 1) can be obtained directly from
(24) since Hi

k(0) = 0 for any i = 1, 2, · · · , k0. When ℓ is
an even positive number, let ℓ = (ℓk0−1 · · · ℓs · · · 00)2 and
ℓ + 1 = (ℓk0−1 · · · ℓs · · · 01)2, where s ≥ 1. From (24), one
can know

Hi
k(ℓ+ 1) = Hi

k(ℓ), i = 1, 2, · · · , k0 − s− 1. (26)

In the next s+1 layers, (24) indicates Hi
k(ℓ+1) = 2k0−i+ℓ =

2k0−i +Hi
k(ℓ), where i = k0 − s, · · · , k0. Therefore, for any

0 < ℓ < k,

Hi
k(ℓ+ 1) =

{
Hi

k(ℓ), i =1, · · · , k0 − s− 1

Hi
k(ℓ) + 2k0−i, i =k0 − s, · · · , k0 .

(27)
It should be noted that (27) also holds if ℓ is an odd number
due to s = 0 in that case. Algorithm 1 shows the process of
the k-point LCH transform producing the next symbol while
ℓ symbols have been output in order. From line 2 to line 4,
the first output symbol of the k-point LCH transform can be
produced via (24). The number of nodes calculated in lines 7
to 9 are from (27).

V. COMPLEXITY ANALYSIS

This section analyzes the theoretical computational com-
plexity of the proposed RLRS codes. To begin with, according
to Sec. III, one can know that two basic operations are
only required, i.e., packet-by-packet addition and packet-by-
symbol multiplication. Considering a single packet size B,

Algorithm 1 sch-LCH(fX, k, β, n)

Input: fX ∈ Fk
2M , k = 2k0 ≤ 2M , β ∈ F2M , 0 ≤ ℓ < k

Output: f(ωℓ + β)

Require: {sch-LCH(fX, k, β, i)}ℓ−1
i=0 have been executed.

1: if ℓ = 0 then
2: for i = 1, 2, · · · , k0 do
3: Calculate the first 2k0−i unknown nodes in layer i.
4: end for
5: else
6: Obtain s via (19).
7: for i = k0 − s, k0 − s+ 1 · · · , k0 do
8: Calculate the first 2k0−i unknown nodes in layer i.
9: end for

10: end if

let Add(M) denote the complexity of one packet-by-packet
addition over F2M , and Mul(M) denote the complexity of
one packet-by-symbol multiplication over F2M . Generally, we
have

Add(M) = η ·Mul(M) (28)

for some η ≤ 1. The value of η highly depends on finite field
arithmetic implementations [15].

In the proposed encoding, k-point LCH transforms must first
be performed to compute the original B/M evaluated polyno-
mials. This part can be considered as calculating all systemati-
cally encoded packets. From [23], k-point LCH/ILCH requires
k log2 k packet-by-packet additions and k

2 log2 k packet-by-
symbol multiplications. Hence, the average encoding complex-
ity of generating one systematic encoded packet over F2M can
be seen as

X (M) =
Add(M) · k log2 k +Mul(M) · k

2 log2 k

k

=(
1

2
+ η) · log2 k ·Mul(M).

(29)

The above is also the average encoding complexity of
generating one non-systematic encoded packet over F2M . In
fact, the average encoding complexity of generating one non-
systematic encoded packet is affected by field extensions. The
following will demonstrate that the complexity growth caused
by field extensions is smaller compared with that in [15]. This
is due to the special structure of the field tower (1), and it can
also be applied to the construction of RLRS codes in [15].

A. Complexity growth

After one field extension, each symbol in F22M is repre-
sented by a binary sequence of length 2M . Note that the
packet size does not change as the field changes, as shown in
Fig. 2. Then, Add(2M) is still the complexity of performing
bit-wise XOR on B bits, and we have Add(2M) = Add(M).
For packet-by-symbol multiplication in F22M , we first consider
the case of single symbol. Let a symbol be a ·um+ b ∈ F22M

and a constant symbol c · um + d ∈ F22M , where a, b, c, d ∈
F2M . Then

(a · um + b) · (c · um + d)

=ac · u2
m + (ad+ bc) · um + bd.

(30)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 8

TABLE II
COMPARISON OF OPERATION COMPLEXITIES

Operation Complexity
[15] Proposed

Corr. to Add(2M) Add(M) Add(M)

Corr. to Mul(2M) 4+3η
2

Mul(M)
3(1+η)

2
Mul(M)

Corr. to X (M) (1 + η)kMul(M) (1
2
+ η) log2 kMul(M)

Corr. to X (2M)
(4+5η)

2
kMul(M)

(3+7η)
4

log2 kMul(M)

ξ = X (2M)/X (M) 2 + η
2(1+η)

> 2 7
4
− 1

4(2η+1)
< 1.67

By applying Lemma 1 and Karatsuba algorithm [33], the above
formula can be converted into

(a · um + b) · (c · um + d)

= ((a+ b) · (c+ d)− b · d) · um + (b · d+ a · cv2m−1).
(31)

In (31), c, d and v2m−1 are all constants, then c+ d, c · v2m−1

can be calculated in pre-processing. Consequently, (31) can be
done by 3 multiplications and 3 additions in F2M . Note that
the packet-by-symbol multiplication in F2M at this time has
only half the size. From the above, one can get

Mul(2M) = 3 · Mul(M) +Add(M)

2
=

3(1 + η)

2
Mul(M).

(32)
From the above, over F22M , the encoding complexity of
generating one non-systematic encoded packet is

X (2M) =
Add(2M) · k log2 k +Mul(2M) · k

2 log2 k

k

=
3 + 7η

4
log2 k ·Mul(M).

(33)

Then according to (29) and (33), the complexity growth speed
caused by the field extension is

ξ =
X (2M)

X (M)
=

7η + 3

4η + 2
=

7

4
− 1

4(2η + 1)
. (34)

where 1.5 < ξ < 1.67.
The above result is useful for analyzing the complexity

of the proposed encoding. Clearly, the complexity growth
speed obtained in this paper is lower compared with ξ =
2 + 0.5 η

1+η > 2 presented in [15]. TABLE II shows the
comparison of operation complexities between [15] and this
paper. It is worth mentioning that if the realization of the field
extension in [15] is replaced by using the field tower, one can
check that the corresponding complexity growth speed ξ can
be converted from 2+0.5 η

1+η to 1.5+ η
1+η . The improvement

is
0.5− 0.5 η

1+η

2 + 0.5 η
1+η

=
1

4 + 5η
, where 0 < η ≤ 1. (35)

The above formula indicates that the field tower in this paper
can be used in [15] to reduce the corresponding computational
complexity growth speed by 11% to 25%.

B. Encoding complexity

As more than one field extension has no practical meaning,
this subsection only considers the case where field extension
occurs at most once. [15] gives the upper bounds of the

average number of non-systematic encoded packets if field
extension does not occur or only occurs once. Specifically, let
ϵ < 1 be the packet loss probability in data transmission and p
the probability that the receiver cannot successfully receive k
packets without field extension. The above two upper bounds
are, respectively,

K0 =
ϵk

1− ϵ
, K1 =

p · ϵk
1− ϵ

, (36)

where K0 is the result when no filed extension occurs, and K1

is the result that occurs only once. Now, it is straightforward
to show that the per-source packet encoding complexity of the
proposed RLRS code is upper-bounded by

CE ≤ k · X (M) + X (M) · K0 + X (2M) · K1

k
, (37)

where the first term of the numerator can be seen as the com-
plexity of generating all systematic encoded packets. Further,
the above formula can be reformulated as

CE ≤ X (M) +
X (M)

k
· K0 +

ξ · X (M)

k
· K1

= X (M) · 1 + ξpϵ

1− ϵ

= (η +
1

2
) · B

M
· log2 k ·Mul(M) · 1 + ξpϵ

1− ϵ
.

(38)

Given a fixed packet loss probability ϵ, the above formula indi-
cates the per-source packet encoding complexity is O(log2 k).
This is an improvement compared to O(k) in [15].

C. Decoding complexity

As shown in Sec. III-B, all source packets can be decoded
according to the (n, k) LCH-based RS decoding algorithm
over F2n̂ , where n̂ = 2⌈log2 log2 n⌉. When decoding a single
codeword, [25] shows that the decoding algorithm has the
packet-by-packet addition and packet-by-symbol multiplica-
tion complexities of both O(n log2 n). The average size of n
is k/(1− ϵ). If the total number of encoded packets n < 2M ,
then n̂ = M and the order of overall decoding complexity
is O(k

1−ϵ · log2
k

1−ϵ · (Add(M) +Mul(M))). Hence, the per-
source packet decoding complexity is

O
(
1 + η

1− ϵ
· log2

k

1− ϵ
·Mul(M)

)
. (39)

Alternatively, if the total number of encoded packets n > 2M ,
then n̂ = 2M and the per-source packet decoding complexity
is

O
(

3 + 5η

2(1− ϵ)
· log2

k

1− ϵ
·Mul(M)

)
. (40)

Given a fixed packet loss probability ϵ, both (39) and (40) indi-
cate the per-source packet decoding complexity is O(log2 k).

VI. SIMULATIONS AND COMPARISONS

This section demonstrates the performance of the proposed
RLRS codes and compares them with other rateless codes,
such as the Cauchy-based RLRS codes [15] and the well-
known RaptorQ [26]. The RaptorQ is the most advanced

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 9

Fig. 5. Result of subtracting the number of packet-by-packet additions
required by the Cauchy-based RLRS codes [15] from that of the proposed
RLRS codes (all involved operations are reduced to packet-by-packet additions
over F28 , η is shown in (28), and ϵ is the packet loss probability).

Raptor code and uses the binary extension field F28 to im-
prove performance. In the Cauchy-based RLRS codes, the
preservative field extension is implemented by the field tower
presented in this paper, as TABLE II shows that it is superior
in both Mul(2M) and ξ. All simulations were performed on
the virtual machine equipped with Ubuntu 22.04 LTS operating
system, 12-th Gen Intel Core i7-12700H (2.30GHz), and 4 GB
4800 MHz DDR5 SDRAM. All RLRS codes set the initial
field to F28 . All rateless codes were implemented in C/C++
language, with RaptorQ obtained from an open-source code on
Github [27]. In particular, the implementation of the RaptorQ
provides two versions with and without pre-calculation. To
obtain stable results, all simulation results under each setting
are taken as the average value after multiple repetitions.
Specifically, when k ≤ 256, the number of repetitions is 1000;
when k > 256, the number of repetitions is set to 20 due to
the increase in consumed time. Note that k is the number of
source packets.

To begin with, Fig. 5 shows the difference in operation
numbers between the proposed RLRS codes and Cauchy-based
RLRS codes. We reduce all operations to packet-by-packet
additions over F28 . Each packet-by-symbol multiplication over
F28 can be converted to the packet-by-packet addition via
the factor η in (28). According to experience, addition over
F28 is about four times more efficient than multiplication,
that is, η = 1/4. Fig. 5 shows a comparison when η takes
more possible values. Moreover, any operation in F216 can be
converted to F28 for execution, as shown in TABLE II. The
vertical axis represents the result of subtracting the operation
number required by the Cauchy-based RLRS codes from the
proposed RLRS codes. Thus, the smaller the vertical axis, the
higher the operational efficiency of the proposed RLRS codes.
From Fig. 5, it can be seen that the proposed RLRS codes
perform better than the Cauchy-based RLRS codes, especially
as the packet loss probability ϵ increases. The two RLRS codes
have similar operational efficiency when k(≤ 64) is small. In
that case, the theoretical complexity advantage is not obvious,

Fig. 6. Coding throughputs of different rateless codes when the packet loss
probability ϵ = 0.2 and individual packet size B = 256 bits (where k is the
number of source packets and only RLRS codes can guarantee zero reception
overhead).

Fig. 7. Coding throughputs of different rateless codes when the packet loss
probability ϵ = 0.4 and individual packet size B = 256 bits (where k is the
number of source packets and only RLRS codes can guarantee zero reception
overhead).

and the Cauchy-based RLRS codes can reduce decoding com-
plexity by utilizing successfully received systematic encoded
packets. From Fig. 5, one can also see that the difference
in operation number does not change smoothly, i.e., there is
fluctuation when k is slightly greater than a power of two.
This is due to the fact that the proposed RLRS codes need to
align the total number of source packets to a power of two by
filling empty packets. When k is far away from the smallest
power of two not less than it, the more operations caused by
empty packets drag down the performance. This is especially
obvious when k is slightly larger than 128, due to the presence
of a large number of operations over the large field F216 in
the proposed RLRS codes. At this time, the Cauchy-based
RLRS codes still only need to be performed in F28 . We will
see from the simulations later that the actual performance
difference between the two RLRS codes is consistent with
the comparison in operation numbers.

Fig. 6-8 show the performances of different rateless codes

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 10

Fig. 8. Encoding and decoding throughputs of different rateless codes when the packet loss probability ϵ = 0.3 and individual packet size B = 256 (where
k is the number of source packets and only RLRS codes can guarantee zero reception overhead).

under different parameters. The coding throughput is defined
as the ratio of the total size of k source packets to the sum
of the time spent on encoding and decoding. Due to the fact
that RLRS codes always maintain zero reception overhead, the
overhead in the implementation of RaptorQ is set to zero by
default so it is not always decoded successfully (the probability
of successful decoding is about 99% [26]). From Fig. 6 with
the packet loss probability ϵ = 0.2 and individual packet
size B = 256, one can see that RLRS codes always perform
better than RaptorQ codes if k is less than a certain threshold.
Obviously, the threshold of the proposed RLRS codes is larger
than that of the Cauchy-based RLRS codes, and the difference
between the two thresholds increases with ϵ increasing, as
shown in Fig. 7 with ϵ being 0.4. When k is large, the proposed
RLRS codes perform better than the Cauchy-based RLRS
codes due to their lower computational complexity. In addition,
both Fig. 6 and Fig. 7 show that the threshold between the
proposed RLRS codes and RaptorQ codes is k = 128. This
offers the possibility for the proposed RLRS codes to replace
RaptorQ in short codes. Note that in addition to having a
performance advantage in short codes, the proposed RLRS
codes can always guarantee zero reception overhead, while
the RaptorQ codes cannot.

From Fig. 6 and 7, we remark that the proposed RLRS codes
have significant performance fluctuations. This is consistent
with the previous discussion on the number of operations.
Briefly, the proposed RLRS codes need to align the total
number of source packets to a power of two by filling empty
packets. When k is not a power of two, the encoding/decoding
process is the same as when the total number of source
packets is the smallest power of two greater than k, thus
increasing the computational cost. Note that, like the principle
of shortened RS codes [21], filling empty packets does not
increase the proposed RLRS code’s reception overhead. To
show the performance differences in more detail, Fig. 8 gives
the encoding/decoding performance of different rateless codes
at ϵ = 0.3 and B = 256. The encoding (resp. decoding)
throughput is defined as the ratio of the total size of k source
packets to the time spent on encoding (resp. decoding). It can
be observed that the performance advantage of the RaptorQ
in large k comes from the pre-calculation of encoding.

In simulations, we also tested the performances of different

rateless codes with the individual packet size B = 512 and
1024. The results show that the performance advantage of the
proposed RLRS codes compared to other codes decreases as
B increases. From the above, we conclude that the proposed
RLRS codes are more suitable for the scenario with high
packet loss probability ϵ and small k,B.

VII. CONCLUSIONS

In this paper, a new construction of the RLRS codes is
proposed based on Vandermonde generator matrices. Com-
pared with the Cauchy-based RLRS codes in literature, the
proposed RLRS codes have the following advantages. The first
is that the proposed preservative field extension can be easily
implemented without searching for quadratic irreducible poly-
nomials with specific forms. The second is that LCH/ILCH
transforms can be employed in the proposed RLRS codes
to obtain the encoding and decoding complexities of both
O(log2 k) per source packet, less than those of both O(k) in
the Cauchy-based RLRS codes. Finally, the proposed RLRS
codes have a lower speed of computational complexity growth
caused by field extension. Note that in practice field extension
occurs at most once, so it does not affect the order of the
above computational complexity. This paper also proposes a
scheduling scheme to generate encoded packets on demand to
avoid unexpected computation costs of the LCH transform that
always produces burst outputs. Simulation results show that
the performance of the proposed RLRS codes is competitive
compared to that of other rateless codes.

REFERENCES

[1] P. Elias, “Coding for two noisy channels,” in Information Theory, 3rd
London Symposium, London, England, Sept. 1955, 1955.

[2] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM transac-
tions on networking, vol. 7, no. 3, pp. 277–292, 1999.

[3] C. M. Kozierok, The TCP/IP guide: a comprehensive, illustrated Internet
protocols reference. No Starch Press, 2005.

[4] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, and V. P. Kompella, “The
multimedia multicast channel,” in International Workshop on Network
and Operating System Support for Digital Audio and Video. Springer,
1992, pp. 197–208.

[5] L. Rizzo and L. Vicisano, “A reliable multicast data distribution protocol
based on software FEC techniques,” in In Proc. 4th IEEE Workshop
Highperform. Commun. Syst. (HPCS ’97), 1997, pp. 116–125.

[6] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 569–584, 2001.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST XXXX 11

[7] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002. Proceedings. IEEE, 2002, pp.
271–280.

[8] J. W. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain
approach to asynchronous reliable multicast,” IEEE journal on selected
areas in communications, vol. 20, no. 8, pp. 1528–1540, 2002.

[9] A. Shokrollahi, “Raptor codes,” IEEE transactions on information
theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[10] R. Abbas, M. Shirvanimoghaddam, T. Huang, Y. Li, and B. Vucetic,
“Novel design for short analog fountain codes,” IEEE Communications
Letters, vol. 23, no. 8, pp. 1306–1309, 2019.

[11] J. Huang, Z. Fei, C. Cao, M. Xiao, and X. Xie, “Reliable broadcast based
on online fountain codes,” IEEE Communications Letters, vol. 25, no. 2,
pp. 369–373, 2020.

[12] V. Bioglio, “MRB decoding of LT codes over AWGN channels,” IEEE
Wireless Communications Letters, vol. 8, no. 2, pp. 548–551, 2018.

[13] L. Yuan, J. Pan, and K. Deng, “A modified design of Raptor codes
for small message length,” Wireless Networks, vol. 25, pp. 2437–2447,
2019.

[14] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
evolution of peer-to-peer systems,” in Proceedings of the twenty-first
annual symposium on Principles of distributed computing, 2002, pp.
233–242.

[15] R. R. Borujeny and M. Ardakani, “A new class of rateless codes based on
Reed–Solomon codes,” IEEE Transactions on Communications, vol. 64,
no. 1, pp. 49–58, 2015.

[16] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[17] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

[18] L. Rizzo and L. Vicisano, “A reliable multicast data distribution protocol
based on software FEC techniques,” in The Fourth IEEE Workshop on
High-Performance Communication Systems. IEEE, 1997, pp. 116–125.

[19] L. Vicisano, J. Crowcroft, and L. Rizzo, “TCP-like congestion control
for layered multicast data transfer,” in Proceedings. IEEE INFOCOM’98,
the Conference on Computer Communications. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Gateway to the 21st Century (Cat. No. 98, vol. 3. IEEE, 1998, pp.
996–1003.

[20] U. Aho, J. D. Ullman, and E. John, “Hopcroft,“data structures and
algorithms”,” 1983.

[21] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier, 1977, vol. 16.

[22] F. Didier, “Efficient erasure decoding of Reed-Solomon codes,” arXiv
preprint arXiv:0901.1886, 2009.

[23] S.-J. Lin, W.-H. Chung, and Y. S. Han, “Novel polynomial basis and its
application to Reed-Solomon erasure codes,” in 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, 2014, pp. 316–325.

[24] S.-J. Lin, T. Y. Al-Naffouri, and Y. S. Han, “FFT algorithm for binary
extension finite fields and its application to Reed–Solomon codes,” IEEE
Transactions on Information Theory, vol. 62, no. 10, pp. 5343–5358,
2016.

[25] S.-J. Lin, T. Y. Al-Naffouri, Y. S. Han, and W.-H. Chung, “Novel
polynomial basis with fast Fourier transform and its application to Reed–
Solomon erasure codes,” IEEE Transactions on Information Theory,
vol. 62, no. 11, pp. 6284–6299, 2016.

[26] L. Minder, A. Shokrollahi, M. Watson, M. Luby, and T. Stockhammer,
“RaptorQ Forward Error Correction Scheme for Object Delivery,” RFC
6330, Aug. 2011. [Online]. Available: https://www.rfc-editor.org/info/
rfc6330

[27] Project webpage, https://github.com/sleepybishop/nanorq.
[28] W. Ryan and S. Lin, Channel codes: classical and modern. Cambridge

university press, 2009.
[29] D. G. Cantor, “On arithmetical algorithms over finite fields,” Journal of

Combinatorial Theory, Series A, vol. 50, no. 2, pp. 285–300, 1989.
[30] S.-L. Yang, “On the LU factorization of the Vandermonde matrix,”

Discrete applied mathematics, vol. 146, no. 1, pp. 102–105, 2005.
[31] J. Von Zur Gathen and J. Gerhard, Modern computer algebra. Cam-

bridge university press, 2013.
[32] J. Lee and S. Park, “Optimum UDP packet sizes in ad hoc networks,”

IEICE transactions on communications, vol. 88, no. 2, pp. 815–820,
2005.

[33] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba algo-
rithm for polynomial multiplication,” Submitted to Design, Codes and
Cryptography, 2002.

Leilei Yu received the B.Eng. degree in electronic
information engineering from the Tianjin Univer-
sity of Technology, Tianjin, China, in 2015, and
the Ph.D. degree in cyberspace security from the
University of Science and Technology of China,
Hefei, China, in 2021. From 2021 to 2022, he was
a cybersecurity researcher with the Purple Mountain
Laboratories, Nanjing, China. He is currently a post-
doctoral research fellow with the Shenzhen Institute
for Advanced Study, University of Electronic Sci-
ence and Technology of China. His research focuses

on coding theory and high-performance computing.

Sian-Jheng Lin (M’16) received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science from Na-
tional Chiao Tung University, Hsinchu, Taiwan, in
2004, 2006, and 2010, respectively. From 2010 to
2014, he was a postdoc with the Research Center
for Information Technology Innovation, Academia
Sinica. From 2014 to 2016, he was a postdoc with
the Electrial Engineering Department at King Abdul-
lah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia. From 2016 to 2021, he was
a researcher with the School of Information Science

and Technology at University of Science and Technology of China (USTC),
Hefei, China. He is currently a senior scientist with the Theory Lab, Cenrtal
Research Institute, 2012 Labs, Huawei Technology Co. Ltd. In recent years,
his research focuses on the codes for storage systems, channel coding for
memories and lossless data compressions.

Yunghsiang S. Han (S’90-M’93-SM’08-F’11) was
born in Taipei, Taiwan, 1962. He received B.Sc.
and M.Sc. degrees in electrical engineering from
the National Tsing Hua University, Hsinchu, Taiwan,
in 1984 and 1986, respectively, and a Ph.D. degree
from the School of Computer and Information Sci-
ence, Syracuse University, Syracuse, NY, in 1993.
He was from 1986 to 1988 a lecturer at Ming-Hsin
Engineering College, Hsinchu, Taiwan. He was a
teaching assistant from 1989 to 1992, and a research
associate in the School of Computer and Information

Science, Syracuse University from 1992 to 1993. He was, from 1993 to 1997,
an Associate Professor in the Department of Electronic Engineering at Hua
Fan College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering at
National Chi Nan University, Nantou, Taiwan from 1997 to 2004. He was
promoted to Professor in 1998. He was a visiting scholar in the Department
of Electrical Engineering at University of Hawaii at Manoa, HI from June
to October 2001, the SUPRIA visiting research scholar in the Department of
Electrical Engineering and Computer Science and CASE center at Syracuse
University, NY from September 2002 to January 2004 and July 2012 to June
2013, and the visiting scholar in the Department of Electrical and Computer
Engineering at University of Texas at Austin, TX from August 2008 to June
2009. He was with the Graduate Institute of Communication Engineering at
National Taipei University, Taipei, Taiwan from August 2004 to July 2010.
From August 2010 to January 2017, he was with the Department of Electrical
Engineering at National Taiwan University of Science and Technology as
Chair Professor. From February 2017 to February 2021, he was with School
of Electrical Engineering & Intelligentization at Dongguan University of
Technology, China. Now, he is with the Shenzhen Institute for Advanced
Study, University of Electronic Science and Technology of China and as a
consultant of Huawei Technology company. His research interests are in error-
control coding, wireless networks, and security.

Dr. Han was a winner of the 1994 Syracuse University Doctoral Prize and
a Fellow of IEEE. One of his papers won the prestigious 2013 ACM CCS
Test-of-Time Award in cybersecurity.

